[1]
R. Reinertsen, Residual life of technical systems; diagnosis, prediction and life extension, Reliab. Eng. Syst. Saf., vol. 54, p.23–34, (1996).
DOI: 10.1016/s0951-8320(96)00092-0
Google Scholar
[2]
N. M. Okasha, D. M. Frangopol, and A. D. Orcesi, Automated finite element updating using strain data for the lifetime reliability assessment of bridges, Reliab. Eng. Syst. Saf., vol. 99, p.139–150, Mar. (2012).
DOI: 10.1016/j.ress.2011.11.007
Google Scholar
[3]
P. A. Pérez Ramírez and I. B. Utne, Decision support for life extension of technical systems through virtual age modelling, Reliab. Eng. Syst. Saf., vol. 115, p.55–69, Jul. (2013).
DOI: 10.1016/j.ress.2013.02.002
Google Scholar
[4]
R. Moghaddass and M. J. Zuo, A parameter estimation method for a condition-monitored device under multi-state deterioration, Reliab. Eng. Syst. Saf., vol. 106, p.94–103, Oct. (2012).
DOI: 10.1016/j.ress.2012.05.004
Google Scholar
[5]
A. Abuhoza, H. R. Schmidt, S. Biswas, U. Frankenfeld, J. Hehner, and C. J. Schmidt, Setup optimization toward accurate ageing studies of gas filled detectors, Nucl. Instruments Methods Phys. Res. A, vol. 718, p.400–402, Aug. (2013).
DOI: 10.1016/j.nima.2012.08.045
Google Scholar
[6]
P. -C. Chang, S. -H. Chen, and V. Mani, A note on due-date assignment and single machine scheduling with a learning/aging effect, Int. J. Prod. Econ., vol. 117, no. 1, p.142–149, Jan. (2009).
DOI: 10.1016/j.ijpe.2008.10.004
Google Scholar
[7]
J. Lee, F. Wu, W. Zhao, M. Ghaffari, L. Liao, and D. Siegel, Prognostics and health management design for rotary machinery systems—Reviews, methodology and applications, Mech. Syst. Signal Process., vol. 42, no. 1–2, p.314–334, Jan. (2014).
DOI: 10.1016/j.ymssp.2013.06.004
Google Scholar
[8]
D. Bayram and S. Şeker, Wavelet based Neuro-Detector for low frequencies of vibration signals in electric motors, Appl. Soft Comput., vol. 13, no. 5, p.2683–2691, May (2013).
DOI: 10.1016/j.asoc.2012.11.019
Google Scholar
[9]
H. M. Hashemian, Wireless sensors for predictive maintenance of rotating equipment in research reactors, Ann. Nucl. Energy, vol. 38, no. 2–3, p.665–680, Feb. (2011).
DOI: 10.1016/j.anucene.2010.09.012
Google Scholar
[10]
A. Kunz, R. Gellrich, G. Beckmann, and E. Broszeit, Theoretical and practical aspects of the wear of vane pumps Part B. Analysis of wear behaviour in the vickers vane pump test, Wear, vol. 181–183, p.868–875, Mar. (1995).
DOI: 10.1016/0043-1648(95)90209-0
Google Scholar
[11]
S. Barella, M. Bellogini, M. Boniardi, and S. Cincera, Failure analysis of a steam turbine rotor, Eng. Fail. Anal., vol. 18, no. 6, p.1511–1519, Sep. (2011).
DOI: 10.1016/j.engfailanal.2011.05.006
Google Scholar
[12]
M. H. Lim, M. S. Leong, and K. H. Hui, Blade Faults Classification and Detection Methods : Review, in Advanced Materials Research Vol. 845, 2014, vol. 845, p.123–127.
DOI: 10.4028/www.scientific.net/amr.845.123
Google Scholar
[13]
W. Su, F. Wang, H. Zhu, Z. Zhang, and Z. Guo, Rolling element bearing faults diagnosis based on optimal Morlet wavelet filter and autocorrelation enhancement, Mech. Syst. Signal Process., vol. 24, no. 5, p.1458–1472, Jul. (2010).
DOI: 10.1016/j.ymssp.2009.11.011
Google Scholar
[14]
Y. Peng and M. Dong, A prognosis method using age-dependent hidden semi-Markov model for equipment health prediction, Mech. Syst. Signal Process., vol. 25, no. 1, p.237–252, Jan. (2011).
DOI: 10.1016/j.ymssp.2010.04.002
Google Scholar
[15]
C. Clarotti, A. Lannoy, S. Odin, and H. Procaccia, Detection of equipment aging and determination of the efficiency of a corrective measure, Reliab. Eng. Syst. Saf., vol. 84, no. 1, p.57–64, Apr. (2004).
DOI: 10.1016/j.ress.2004.01.005
Google Scholar
[16]
M. D. C. Moura, E. Zio, I. D. Lins, and E. Droguett, Failure and reliability prediction by support vector machines regression of time series data, Reliab. Eng. Syst. Saf., vol. 96, no. 11, p.1527–1534, Nov. (2011).
DOI: 10.1016/j.ress.2011.06.006
Google Scholar