Non-Linear Analysis of Rheological Effects in Slender Composite Columns

Article Preview

Abstract:

A thorough analysis of slender columns under axial force and bending moment requires second order effects assessment. Concrete’s creep is one of the factors that increase lateral displacements of the bar in the long run. This phenomenon propitiates the instability and reduces its bearing capacity. This paper shows a procedure for assessing rheological effects based on Eurocode 2 method. This procedure will be added to structural analysis software which takes into consideration geometrical and mechanical non-linearity. As an example interaction diagrams for concrete-encased composite columns with different slenderness values are obtained. These diagrams will demonstrate that rheological effects have a greater influence as axial force eccentricity and slenderness values increase.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

389-395

Citation:

Online since:

July 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Z. P. Bazant: Creep Stability and Buckling Strength of Concrete Columns. Magazine of Concrete Research. Vol. 20, nº 63. (1968), pp.85-94.

DOI: 10.1680/macr.1968.20.63.85

Google Scholar

[2] Z.P. Bazant: Phenomenological theories for creep of concrete based on rheological models. Acta Technica CSAV. Nº 1 (1966), pp.82-109.

Google Scholar

[3] Z. P. Bazant: Mathematical Modeling of Creep and Shrinkage of Concrete. Chapters 2 and 3. John Wiley and sons. New York (1988).

Google Scholar

[4] A. Kawano and R. F. Warner: Model Formulations for Numerical Creep Calculations for Concrete. Journal of Structural Engineering (1996), pp.284-290.

DOI: 10.1061/(asce)0733-9445(1996)122:3(284)

Google Scholar

[5] ANGLE. Structural Analysis Software for Finite Elements. Developed by A. Alonso. Department of Mechanics of the Continuous Medium and T. E. Universitat Politècnica de València.

Google Scholar

[6] W. Mc Guire, R. Gallagher and R. Ziemian. Matrix structural analysis. New York: John Wiley & Sons, Inc. (2000).

Google Scholar

[7] Asociación Española de Normalización y Certificación (AENOR) 1993. Eurocódigo 2: Proyecto de estructuras de hormigón. Parte 1-1: Reglas generales y reglas para edificación. Madrid: AENOR.

Google Scholar

[8] Asociación Española de Normalización y Certificación (AENOR) 1996. Eurocodigo 3: Proyecto de estructuras de acero. Parte 1-1: Reglas generales y reglas para edificación. Madrid: AENOR.

Google Scholar

[9] R. Duan, X. Huang and H. Zhang: Concrete Shrinkage and Creep Effect Prediction Model and the Influence Factors Analysis. Advanced Materials Research. Vols 756-759 (2013) p.2051-(2054).

DOI: 10.4028/www.scientific.net/amr.756-759.2051

Google Scholar

[10] K.S. Virdi and P.J. Dowling: The Ultimate Strength of Composite Columns in Biaxial Bending. In: Proceedings of the institution of civil engineers, Part 2; 55: (1973) pp.251-72.

DOI: 10.1680/iicep.1973.4958

Google Scholar

[11] J.Y.R. Yen: Quasi-Newton Method for Reinforced Concrete Column Analysis and Design. ASCE Journal Structural Engineering, 117(3) (1991), pp.657-66.

DOI: 10.1061/(asce)0733-9445(1991)117:3(657)

Google Scholar

[12] E. Fenollosa and A. Alonso: Assessment of Materials Nonlinearity in Framed Structures of Reinforced Concrete and Composites. 8th International Conference on Fracture Mechanics of Concrete and Concrete Structures. (2013) pp.898-906.

Google Scholar

[13] E. Fenollosa and I. Cabrera: Analysis of Composite Section Columns Under Axial Compression and Biaxial Bending Moments. Structures and Architecture: Concepts, Applications and Challenges. Chapter 186. Taylor & Francis Group, London. (2013).

DOI: 10.1201/b15267-209

Google Scholar