Interactive Mesh Segmentation Based on Graph Laplacian

Article Preview

Abstract:

This paper introduces a novel algorithm that decomposes a given shape into meaningful parts requiring only strokes to specify foreground and background regions. The user is asked to draws freehand sketches to provide some facets as belonging to the desired part of the surface, and then an energy function is constructed based on graph Laplacian. Finally, a solution of minimizing energy function is provided and then segmentation is finished. We have presented an effective interactive system with an easy-to-use UI for mesh segmentation. The experiment results show that our algorithm is robust, fast, and capable of producing satisfactory results with regard to the human intuition and geometric attributes.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1535-1540

Citation:

Online since:

June 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Attene, M., Falcidieno, B., Spagnuolo, M.: Hierarchical mesh segmentation based on fitting primitives. The Visual Computer 22(3), 181–193 (2006).

DOI: 10.1007/s00371-006-0375-x

Google Scholar

[2] Chen, X., Golovinskiy, A., Funkhouser, T.: A benchmark for 3D mesh segmentation. In: ACM SIGGRAPH 2009 papers, p.1–12. ACM (2009).

DOI: 10.1145/1576246.1531379

Google Scholar

[3] Funkhouser, T., Kazhdan, M., Shilane, P., Min, P., Kiefer, W., Tal, A., Rusinkiewicz, S., Dobkin, D.: Modeling by example. In: ACM SIGGRAPH 2004 Papers, p.663. ACM (2004).

DOI: 10.1145/1186562.1015775

Google Scholar

[4] Gregory, A., State, A., Lin, M., Manocha, D., Livingston,M.: Interactive surface decomposition for polyhedral morphing. The Visual Computer 15(9), 453–470 (1999).

DOI: 10.1007/s003710050192

Google Scholar

[5] Ji, Z., Liu, L., Chen, Z., Wang, G.: Easy mesh cutting. In: Computer Graphics Forum, vol. 25, p.283–291. WileyOnline Library (2006).

DOI: 10.1111/j.1467-8659.2006.00947.x

Google Scholar

[6] Kalogerakis, E., Hertzmann, A., Singh, K.: Learning 3Dmesh segmentation and labeling. ACM Transactions onGraphics (TOG) 29(4), 1–12 (2010).

DOI: 10.1145/1778765.1778839

Google Scholar

[7] Katz, S., Tal, A.: Hierarchical mesh decomposition using fuzzy clustering and cuts. ACM Transactions on Graphics (TOG) 22(3), 954–961 (2003).

DOI: 10.1145/882262.882369

Google Scholar

[8] Koschan, A.: Perception-based 3D triangle mesh segmentationusin g fast marching watersheds. In: Computer Vision and Pattern Recognition, 2003. Proceedings. 2003 IEEE Computer Society Conference on, vol. 2. IEEE (2003).

DOI: 10.1109/cvpr.2003.1211448

Google Scholar

[9] Lai, Y., Hu, S., Martin, R., Rosin, P.: Fast mesh segmentation using random walks. In: Proceedings of the 2008 ACM symposium on Solid and physical modeling, p.183–191. ACM (2008).

DOI: 10.1145/1364901.1364927

Google Scholar

[10] Lavou´e, G., Dupont, F., Baskurt, A.: A new CAD mesh segmentation method, based on curvature tensor analysis. Computer-Aided Design 37(10), 975–987 (2005).

DOI: 10.1016/j.cad.2004.09.001

Google Scholar

[11] Lee, Y., Lee, S.: Geometric snakes for triangular meshes. In: Computer Graphics Forum, vol. 21, p.229–238. WileyOnline Library (2002).

DOI: 10.1111/1467-8659.00582

Google Scholar

[12] Lee, Y., Lee, S., Shamir, A., Cohen-Or, D., Seidel, H.: Intelligent mesh scissoring using 3d snakes (2004).

DOI: 10.1109/pccga.2004.1348358

Google Scholar

[13] Lee, Y., Lee, S., Shamir, A., Cohen-Or, D., Seidel, H.: Mesh scissoring with minima rule and part salience. Computer Aided Geometric Design 22(5), 444–465 (2005).

DOI: 10.1016/j.cagd.2005.04.002

Google Scholar

[14] L´evy, B., Petitjean, S., Ray, N., Maillot, J.: Least squares conformal maps for automatic texture atlas generation. ACM Transactions on Graphics 21(3), 362–371 (2002).

DOI: 10.1145/566654.566590

Google Scholar

[15] Li, X., Woon, T., Tan, T., Huang, Z.: Decomposing polygon meshes for interactive applications. In: Proceedings of the 2001 symposium on Interactive 3D graphics, p.35–42. ACM New York, NY, USA (2001).

DOI: 10.1145/364338.364343

Google Scholar

[16] Li, Y., Sun, J., Tang, C., Shum, H.: Lazy snapping. ACM Transactions on Graphics (ToG) 23(3), 303–308 (2004).

DOI: 10.1145/1015706.1015719

Google Scholar

[17] Liu, R., Zhang, H.: Segmentation of 3D meshes through spectral clustering. In: Proc. Pacific Graphics, vol. 4, p.298–305. Citeseer (2004).

Google Scholar

[18] Liu, R., Zhang, H.: Mesh segmentation via spectral embedding and contour analysis. In: Computer Graphics Forum, vol. 26, p.385–394. Wiley Online Library (2007).

DOI: 10.1111/j.1467-8659.2007.01061.x

Google Scholar

[19] Pottmann, H., Steiner, T., Hofer, M., Haider, C., Hanbury, A.: The isophotic metric and its application to feature sensitive morphology on surfaces. Computer Vision- ECCV 2004 p.18–23 (2004).

DOI: 10.1007/978-3-540-24673-2_45

Google Scholar