[1]
Kuniaki Yabe, Power Differential Method for Discrimination between Fault and Magnetizing Inrush Current in Transformers. IEEE Transaction on Power Delivery, Vol. 12, No. 3, July (1997).
DOI: 10.1109/61.636909
Google Scholar
[2]
Luis G. Perez, etc. Training an Artificial Neural Network to Discriminate between Magnetizing Inrush and Internal Faults. IEEE Trans, Power Delivery, 1994, Vo1. 9, No. 1, pp.434-441.
DOI: 10.1109/61.277715
Google Scholar
[3]
Xi-Mei Liu, Wan-Yun Wei, Yu Fei. Identification of transformer magnetizing inrush current Based on artificial neural network [J]. Low-voltage Electrical Appliances, 19, 57-60, (2007).
Google Scholar
[4]
R. S. Girgis and E. G. teNyenhuis, Characteristics of inrush current of present designs of power transformer, presented at the IEEE Power Eng. Soc. Gen. Meeting, Tampa, FL, Jun. 24–28, (2007).
DOI: 10.1109/pes.2007.386291
Google Scholar
[5]
M. R. Zaman and M. A. Rahman, Experimental testing of the artificial neural network based protection of power transformers, IEEE Trans, Power Del., vol. 13, no. 2, p.510–517, Apr. (1998).
DOI: 10.1109/61.660922
Google Scholar
[6]
M. R. Zaman and M. A. Rahman, Experimental testing of the artificial neural network based protection of power transformers, IEEE Trans, Power Del., vol. 13, no. 2, p.510–517, Apr. (1998).
DOI: 10.1109/61.660922
Google Scholar
[7]
D. Povh and W. Schultz, Analysis of overvoltages caused by transformer magnetizing inrush current, IEEE Trans. Power App. Syst., vol. 97, no. 4, p.1355–1365, July (1978).
DOI: 10.1109/tpas.1978.354621
Google Scholar
[8]
P. K. Patra, M. Nayak, S. K. Nayak, and N. K. Gobbak, Probabilistic neural network for pattern classification, in Proc. IEEE Int. Joint Conf. Neural Networks, May 12–17, 2002, vol. 2, p.1200–1205.
DOI: 10.1109/ijcnn.2002.1007665
Google Scholar