[1]
Hyvarinen A, QjaE. Indepentent component analysis: Algorithm and application[J]. Neural Network, 2000, 13(4-5): 411-430.
Google Scholar
[2]
Hyvarinen A. Survey on indepentent component analysis[J]. Neural Computing Surveys, 1999, 2(1): 94-128.
Google Scholar
[3]
S.F. Ye. The Application and Consideration about Principal Component Analysis[J]. Application of Statistics and Management, 2001, 20(2): 52-61.
Google Scholar
[4]
Y.X. Yang, B.L. Guo. The studies of principal component analysis on the main eco nomic character and superior variety selection of walnut[J]. Journal of Agricultural University of Hebei, 2010, 24(4): 39-42.
Google Scholar
[5]
Did E. Ramos, 1985, Walnut orchard managemant. Division of Agriculture and Natural Resources. University of California.
Google Scholar
[6]
L.F. Feng, F.D. Lv. Literature Review of Researches on Breeding and Cultivation Techniques of Chinese Walnut[J]. Nonwood Forest Research, 2006, 24(2): 69-73.
Google Scholar
[7]
Emmerich, W. E., and C. L. Verdugo (2008), Precipitation thresholds for CO2 uptake in grass and shrub plant communities on Walnut Gulch Experimental Watershed, Water Resour. Res., 44, W05S16, doi: 10. 1029/2006WR005690.
DOI: 10.1029/2006wr005690
Google Scholar
[8]
Heilman, P., M. H. Nichols, D. C. Goodrich, S. N. Miller, and D. P. Guertin (2008), GIS database, Walnut Gulch Experimental Watershed, Arizona, USA, Water Resour. Res., doi: 10. 1029/2006WR005777, in press.
DOI: 10.1029/2006wr005777
Google Scholar
[9]
Skirvin, S., M. Kidwell, S. Biedenbender, J. P. Henley, D. King, C. Holifield Collins, S. Moran, and M. Weltz (2008), Vegetation data, Walnut Gulch Experimental Watershed, Arizona, USA, Water Resour. Res., doi: 10. 1029/2006WR005724, in press.
DOI: 10.1029/2006wr005724
Google Scholar
[10]
Renard, K. G., M. H. Nichols, D. A. Woolhiser, and H. B. Osborn (2008), A brief background on the USDA Agricultural Research Service Walnut Gulch Experimental Watershed, Water Resour. Res., doi: 10. 1029/2006WR005691, in press.
DOI: 10.1029/2006wr005691
Google Scholar