Quantitative Evaluation on Pozzolanic Reaction of Silica Fume and the Time Dependent Development of Portlandite in Composite Cementitious Systems

Article Preview

Abstract:

Quantitative X-Ray Diffraction (QXRD) with Rietveld full pattern fitting method and the hyphenated technique of ThermoGravimetry (TG) with Differential Scanning Calorimetry (DSC) were used to explore the effects of silica fume (SF) on hydration process of composite cementitious system (CCS) as well as the pozzolanic reaction (PR) of SF in this system. Results indicate that the PR of SF has started at the end of the first day but proceeds very slowly during the rest days due to the agglomeration of SF particles; and the starting point of PR is far earlier than that of drop of CH content, which implies that it is not suitable to mark conventionally the drop of CH content as the starting point of PR.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1237-1242

Citation:

Online since:

July 2014

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. Bensted, P. Barnes, Structure and Performance of Cements, 2nd ed., Spon Press, London and New York, (2008).

Google Scholar

[2] A.G. De La Torre, S. Bruque, M.A.G. Aranda, J. Appl. Cryst. 34 (2001) 196-202.

Google Scholar

[3] R.A. Young, The Rietveld Method, Oxford University Press, New York, (1993).

Google Scholar

[4] F. Guirado, S. Galí, Cem. Concr. Res. 36 (2006) 2021-(2032).

Google Scholar

[5] F. Guirado, S. Gali, S. Chinchon, Cem. Concr. Res. 30 (2000) 1023-1029.

Google Scholar

[6] A.G. de la Torre, A. Cabeza, A. Calvente, S. Bruque, M.A.G. Aranda, Anal. Chem. 73 (2001) 151-156.

DOI: 10.1021/ac0006674

Google Scholar

[7] M.C. Martín-Sedeño, A.J.M. Cuberos, Á.G. De la Torre, G. Álvarez-Pinazo, L.M. Ordónez, M. Gateshki, M.A.G. Aranda, Cem. Concr. Res. 40 (2010) 359-369.

DOI: 10.1016/j.cemconres.2009.11.003

Google Scholar

[8] K.L. Scrivener, T. Fullmann, E. Gallucci, G. Walenta, E. Bermejo, Cem. Concr. Res. 34 (2004) 1541-1547.

Google Scholar

[9] P.J. Williams, J.J. Biernacki, J. Bai, C.J. Rawn, Cem. Concr. Res. 33 (2003) 1553-1559.

Google Scholar

[10] A.J.M. Cuberos, Á.G. De la Torre, M.C. Martín-Sedeño, L. Moreno-Real, M. Merlini, L.M. Ordónez, M.A.G. Aranda, Cem. Concr. Res. 39 (2009) 833-842.

DOI: 10.1016/j.cemconres.2009.06.017

Google Scholar

[11] R. Snellings, G. Mertens, Ö. Cizer, J. Elsen, Cem. Concr. Res. (2010).

Google Scholar

[12] C. Hesse, F. Goetz-Neunhoeffe, J. Neubauer, Cem. Concr. Res. 41 (2011) 123-128.

Google Scholar

[13] D. Jansen, F. Goetz-Neunhoeffer, C. Stabler, J. Neubauer, Cem. Concr. Res. 41 (2011) 602-608.

Google Scholar

[14] K. Matsui, K. Jun, M. Tsunashima, T. Ishikawa, S. Matsuno, A. Ogawa, M. Sato, Cem. Concr. Res. 41 (2011) 510-519.

Google Scholar

[15] A. Korpa, T. Kowald, R. Trettin, Cem. Concr. Res. 39 (2009) 69-76.

Google Scholar

[16] Y.D. Y, S. W, L.Z. Y, Journal of the Chinese Ceramic Society(in Chinese). 35 (2007) 1641-1645.

Google Scholar

[17] A.C. Larson, R.B. Von Dreele, LAUR, Los Alamos National Laboratory, (2004).

Google Scholar

[18] N.R. Yang, W. H. Yue, Pattern Manual of Inorganic Non-metallic Materials, Wuhan university of technology press, Wuhan, (2000).

Google Scholar

[19] J. Zelic, D. Rusic, D. Veza, R. Krstulovic, Cem. Concr. Res. 30 (2000) 1655-1662.

Google Scholar

[20] G.A. Rao, Cem. Concr. Res. 33 (2003) 1765-1770.

Google Scholar

[21] E.J. Sellevold, D.H. Bager, K.J. E., T. Knudsen, in: R. BML (Ed. ), 1981, p.19.

Google Scholar

[22] D.R.G. Mitchell, I. Hinczak, R.A. Day, Cem. Concr. Res. 28 (1998) 1571-1584.

Google Scholar

[23] H. Justnes, Nordic Concr. Res. 17 (1995) 30-41.

Google Scholar

[24] V. Lilkov, E. Dimitrova, O.E. Petrov, Cem. Concr. Res. 27 (1997) 577-588.

Google Scholar