Study of the Mechanical and Thermodynamic Properties on NiAl and Ni3Al

Article Preview

Abstract:

The stuctural, elastic and thermodynamic properties of B2-NiAl and L12-Ni3Al intermetallic compounds are systemically investigated. Using a first principle pseudopotential plane-wave method, several basic mechanical parameters of B2-NiAl and L12-Ni3Al crystals, such as the equilibrium volume, the bulk modulus, the elastic constants, the Zener anisotropy factor, the Poisson’s ratio, the Young’s modulus and isotropic shear modulus are firstly calculated. And then the temperature dependence of the equilibrium volume, the bulk modulus, the thermal expansion coefficient, the heat capacity, the Debye temperature and the Grüneisen parameter are further evaluated in the framework of a quasi-harmonic Debye model. Finally, a special attention is paied on the mutual influence of pressure and temperature on mechenical and thermodynanic properties of B2-NiAl and L12-Ni3Al intermetallic compounds in the range of 0-20 GPa and 0-1000 K.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1256-1263

Citation:

Online since:

July 2014

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R. Darolla J. Mater. Sci. Tchnol, 1994, 10, 157.

Google Scholar

[2] T. Davenprot,L. Zhou,Trivisonc Phys. Rev. B, 1999,59, 3421.

Google Scholar

[3] A. B. Kamara, A. J. Ardell and C. N. J. Wagner Metall. Mater. Trans. A, 1996, 27, 2888.

Google Scholar

[4] F. X. Kayser and C. Stassis Phys. Status. Solidi. A Appl. Res., 1981, 64, 335.

Google Scholar

[5] X. L. Hu, Y. Zhang, G. H. Lu, et al. Intermetallics, 2009, 17 358.

Google Scholar

[6] S. V. Prikhodko, J. D. Carnes, D. G. Isaak, et al Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 1999, 30, 2403.

Google Scholar

[7] D. E. Kim, S. L. Shang and Z. K. Liu Intermetallics, 2010, 18, 1163.

Google Scholar

[8] J. T. Guo, L. Z. Zhou and Z. G. Liu Acta. Metall. Sin. 1996, 9, 515.

Google Scholar

[9] E. P. George, C. T. Liu and D. P. Pope Scripta Metallurgica et materialia, 1993, 28, 857.

Google Scholar

[10] Y. Wang, Z. K. Liu and L. Q. Chen Acta. Materialia., 2004, 52, 2665.

Google Scholar

[11] E. I. Isaev, A. I. Lichtenstein, Y. K. Vekilov, et al Solid State Communications, 2004, 129, 809–814.

Google Scholar

[12] S. L. Shang, Y. Wang, D. E. Kim and Z. K. Liu Computational Materials Science, 2010, 47, 1040.

Google Scholar

[13] G. Kresse and J. Furthmüller Phys. Rev. B, 1996, 54, 11 169.

Google Scholar

[14] P. E. Blöuml Phys. Rev B: 1994, 50, 17953.

Google Scholar

[15] J. P. Perdew and Y. Wang Phys. Rev. B, 1992, 45, 13244.

Google Scholar

[16] H. J. Monkhorst and J. D. Pack Phys. Rev. B, 1976, 13, 5188.

Google Scholar

[17] M. A. Blanco, E. Francisco and V. Luaña Comput. Phys. Commun., 2004, 158, 57.

Google Scholar

[18] F. Peng, H. Z. Fu and X. D. Yang Solid State Commun., 2008, 145, 91.

Google Scholar

[19] M. A. Blanco, A. M. Pendás, E. Francisco, et al J. Molec. Struct., 1996, 368, 245.

Google Scholar

[20] F. D. Murnaghan, Proc. Natl. Acad. Sci. USA, 1944, 30, 244.

Google Scholar

[21] J. W. Otto, J. K. Vassiliou and G. Frommeyer J. Mater. Res., 1997, 12, 3106.

Google Scholar

[22] H. Z. Fu, X. F. Li, W. F. Liu, et al Intermetallics, 2011, 19, (1959).

Google Scholar

[23] S. Stassis Phys. Stat. Socl. A, 1981, 64, 335.

Google Scholar

[24] P. Ravindran, L. Fast, P. A. Korzhavyi et al J. Appl. Phys., 1998, 84, 4891.

Google Scholar

[25] D. G. Pettifor Mater. Sci. Technol., 1992, 8, 345.

Google Scholar

[26] J. Haines, J. M. Leger and G. Bocquillon Ann. Rev. Mater. Res., 2001, 31.

Google Scholar

[27] K. Y. Chen, L. R. Zhao and R. John J. Phys D: Appl Phys, 2003, 36, 2725.

Google Scholar

[28] C. L. Hsieh, W. H. Tuan and T. T. Wu J Europ Ceramic society. 2004, 24, 3789.

Google Scholar