On Equilibrium for Abstract Economies in GFC-Spaces

Article Preview

Abstract:

In this paper, the GFC-KKM mapping is introduced and GFC-KKM theorems are established in GFC-spaces. As applications, a fixed point theorem and maximal element theorem are obtained. Our results unify, improve and generalize some known results in recent reference. Finally, equilibrium existence theorems for qualitative games and abstract economies are yielded in GFC-spaces.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

2279-2284

Citation:

Online since:

July 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] P. Q. Khanh, N. H. Quan and J. C. Yao, Nonlinear Anal., Vol. 71(2009), p.1227.

Google Scholar

[2] N. X. Hai, P. Q. Khanh and N. H. Quan, Nonlinear Anal., Vol. 71(2009), p.6170.

Google Scholar

[3] P. Q. Khanh, N. H. Quan, Quan, Nonlinear Anal., Vol. 72(2010), p.2706.

Google Scholar

[4] K. T. Wen, 2nd International Conference on Artificial Intelligence, Management Science and Electronic Commerce, Vol. 2(2011), p.923.

Google Scholar

[5] K. T. Wen, H. R. Li, 2011 World Congress on Engineering and Technology, Vol. 1(2011), p.543.

Google Scholar

[6] K. T. Wen, Acta Anal. Funct. Appl. Vol. 14(3)(2012), p.292.

Google Scholar

[7] K. T. Wen, H.R. Li, Advanced Materials Research, Vol. 734-737(2013), p.2867.

Google Scholar

[8] K. T. Wen, Applied Mechanics and Materials, Vol. 405-408(2013), p.3151.

Google Scholar

[9] K. T. Wen, J. Bijie University, Vol. 31(4)(2013) , p.62.

Google Scholar

[10] K. T. Wen, J. Math. Res. Exposition, Vol. 29(6)(2009), p.1061.

Google Scholar

[11] K. T. Wen, Adv. Math. China, Vol. 39(3)(2010), p.331.

Google Scholar

[12] X.P. Ding, Computers Math. Appl., Vol. 43(2002) , p.1249.

Google Scholar

[13] W. A. Kirk, B. Sims, Xian-Zhi Yuan. Nonlinear Anal., Vol. 39(2000), p.611.

Google Scholar

[14] X. P. Ding, J. Math. Anal. Appl., Vol. 266(2002), p.21.

Google Scholar

[15] S. Park. Nonlinear Anal. TMA, Vol. 48(2002), p.869.

Google Scholar

[16] R. U. Verma, Computers Math. Appl. , Vol. 37(1999), p.45.

Google Scholar

[17] S. Park. Nonlinear Anal., Vol. 37(1999), p.467.

Google Scholar

[18] M. S. R. Chowdhury, E. Tarafder and K.K. Tan, Nonlinear Anal., Vol. 43(2001), p.253.

Google Scholar

[19] R. U. Verma, J. Math. Anal. Appl., Vol. 232(1999), p.428.

Google Scholar

[20] M. Fang, X.P. Ding, Appl. Math. Mech. (Eglish Edition), Vol. 27(2006), p.1451.

Google Scholar

[21] K.K. Tan, Nonlinear Anal. TMA, Vol. 30(1997), p.4151.

Google Scholar

[22] M. A. Khamsi, J. Math. Anal. Appl., Vol. 204(1996), p.298.

Google Scholar

[23] M. S. R. Chowdhury, J. Appl. Math. Stochastic Anal., Vol. 11(1998), p.493.

Google Scholar

[24] K. T. Wen, Chinese J. Engineering Math., Vol. 25(1)(2008), p.149.

Google Scholar

[25] K. T. Wen, J. Sichuan Normal University(Natural Science), Vol. 32(5)(2009), p.608.

Google Scholar

[26] K. T. Wen, J. Sichuan Normal University(Natural Science), Vol. 33(2)(2010), p.166.

Google Scholar

[27] K. T. Wen, J. Southwest China Normal University(Natural Science Ed. ), Vol. 35(1)(2010), p.45(in Chinese).

Google Scholar

[28] K. T. Wen, College Math., Vol. 28(3)(2012), p.24.

Google Scholar

[29] K. T. Wen, Chin. Quart. J. Math., Vol. 27(1) (2012), p.63.

Google Scholar

[30] K. T. Wen, H. R. Li, J. Quantitative Economics, Vol. 29(4) (2012), p.38(in Chinese).

Google Scholar

[31] K. T. Wen, Adv. Math. China, Vol. 42(4) (2013), p.527.

Google Scholar

[32] K. T. Wen, Acta Math. Sci., Vol. 26(A)(7)(2006) , p.1159.

Google Scholar

[33] K. T. Wen, Adv. Math. China, Vol. 36(4)(2007), p.407.

Google Scholar

[34] K. T. Wen, H. R. Li and F. P. Zen, Acta Math. Sci., Vol. 31(4)(2011), p.1077.

Google Scholar

[35] X. Z. Yuan, J. Math. Anal. Appl., Vol. 235(1)(199), p.315.

Google Scholar

[36] K. T. Wen, Math. Appl., Vol. 25(2)(2012), p.295.

Google Scholar

[37] F. J. Chen, Z. F. Shen, Adv. Math. China, Vol. 34(5)(2005), p.614.

Google Scholar

[38] P. J. Watson, Austral. Math. Soc., Vol. 59(1999), p.297.

Google Scholar