Electrochemical Oxidation of the Effluent from Coking Wastewater Treatment Plants Using Ti/RuO2-IrO2 Electrode

Article Preview

Abstract:

This paper explored the electrochemical oxidation of coking wastewater with Ti/RuO2-IrO2 anode. The effects of electrodes connections, area-volume ratio and aeration on the removal efficiency were studied and the ammonia removal mechanism was investigated. The results show that the highest NH4+-N and COD removal efficiency and current efficiency are achieved at the area-volume ratio of 14.44m2/m3 and electrode distance of 0.5cm. Unipolar connection is better than bipolar connection. For electrochemical oxidation of ammonia, the chloride ion is the main factor affecting nitrogen removal. NH4+-N is removed mainly by the oxidation of hypochlorous.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

629-635

Citation:

Online since:

July 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Jianlong. W., Xiangchun. Q., Libo. W., Yi, Q, and Hegemann, W. Process Biochemistry. (2002), 38(5), pp.777-781.

DOI: 10.1016/s0032-9592(02)00227-3

Google Scholar

[2] R.G. Luthy, V.C. Stamoudis, J.R. Campbell and W. Harrison. Journal (Water Pollution Control Federation). (1983), pp.196-207.

Google Scholar

[3] Y. Qian, Y. Wen, and H. Zhang. Water Res. 28 (1994), p.701–710.

Google Scholar

[4] M. Zhang, J.H. Tay, Y. Qian and X.S. Gu, Water Res. 32 (2) (1998), p.519–527.

Google Scholar

[5] B.R. Lim, H.Y. Hu and K. Fu. Water Air Soil Pollut. 146 (2003), p.23–33.

Google Scholar

[6] N.G. Azhar and D.C. Stuckey. Water Sci. Technol. 30 (1994), p.223–232.

Google Scholar

[7] M. Zhang, J.H. Tay, Y. Qian and X.S. Gu. J. Env. Eng. (1997), p.876–883.

Google Scholar

[8] H.Q. Yu, G.W. Gu and L.P. Song. J. Env. Eng. 123 (3) (1997), p.305–308.

Google Scholar

[9] M.W. Lee and J.M. Park. Water Env. Res. 70 (5) (1998), p.1090–1095.

Google Scholar

[10] H.Q. Yu, G.W. Gu and L.P. Song. Bioresour. Technol. 58 (1996), p.46–55.

Google Scholar

[11] M.W. Lee and J.M. Park. Water Env. Res. 70 (5) (1998), p.1090–1095.

Google Scholar

[12] J.X. Liu, W.G. Li, X.H. Wang, H.Y. Liu and B.Z. Wang. Water Sci. Technol. 38 (1) (1998), p.39–46.

Google Scholar

[13] M.T. Suidan, C.E. Strubler, S.W. Kao and J.T. Preffer. J. Water Pollut. Control Fed. 55 (10) (1983), p.1263–1270.

Google Scholar

[14] J.X. Liu, W.G. Li, X.H. Wang, H.Y. Liu and B.Z. Wang. Water Sci. Technol. 38 (1) (1998), p.39–46.

Google Scholar

[15] S.H. Lin and C.L. Wu. Water Res., 30 (3), (1996), p.715–721.

Google Scholar

[16] A.M. Polcaro and S. Palmas. Ind. Eng. Chem. Res., 36, (1997), p.1791–1798.

Google Scholar

[17] L. Szpyrkowicz, C. Juzzolino, S.N. Kaul and S. Daniele. Ind. Eng. Chem. Res., 39, (2000), p.3241–3248.

DOI: 10.1021/ie9908480

Google Scholar

[18] A.G. Vlyssides and C.J. Israilides. Environ. Pollut. 97 (1997), p.147–152.

Google Scholar

[19] Y. Vanlangendonck, D. Cornisier and A. Van Lierde. Water Res. 39 (2005), p.3028–3034.

Google Scholar

[20] A.G. Vlyssides, P.K. Karlis, N. Rori and A.A. Zorpas. J. Hazard. Mater. 95 (2002), p.215–226.

Google Scholar

[21] L.C. Chiang, J.E. Chang and T.C. Wen. Water Res. 29 (1995), p.671–678.

Google Scholar

[22] L.C. Chiang, J.E. Chang, and T.C. Wen. Water Res., 29 (2), (1995), p.671–678.

Google Scholar

[23] L. Szpyrkowicz, F. Naumczyk and F. Zilio-Grandi. Water Res. 29 (1995), p.517–524.

DOI: 10.1016/0043-1354(94)00176-8

Google Scholar

[24] C. Feng, N. Sugiura, S. Shimada and T. Maekawa. J. Hazard. Mater. 103 (2003), p.65–78.

Google Scholar

[25] C. Zhang, H. Lin, J. Chen and W. Zhang. Environmental technology, 34(16) (2013), p.2371–2376.

Google Scholar

[26] J. Cheng J, X. Zhu, J. Ni and A.I. Borthwick. Bioresource technology, 101(8), 2010, p.2729–2734.

Google Scholar

[27] L. Li and Y. Liu. Journal of Hazardous Materials, 161(2), (2009), p.1010–1016.

Google Scholar