Improved Low-Rank Matrix Approximation for Hyperspectral Image Spatial-Spectral Feature Extraction

Article Preview

Abstract:

It is important to take account into both the spectral domain and spatial domain information for hyperspectral image analysis. Thus, how to effectively integrate both spectral and spatial information confronts us. Motived by the least square form of PCA, we extend it to a low-rank matrix approximation form for multi-feature dimensionality redu-ction. In addition, we use the ensemble manifold regularize-ation techniques to capture the complementary information provided by spectral-spatial features of hyperspectral image. Experimental results on public hyperspectral data set demonstrate the effectiveness of our proposed method.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

716-721

Citation:

Online since:

June 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. Solomon and B. Rock, Imaging spectrometry for earth remote sensing, Science, vol. 228, p.1147–1153, (1985).

Google Scholar

[2] J. Bioucas-Dias, A. Plaza, G. Camps-Valls, P. Scheunders,N. Nasrabadi, and J. Chanussot, Hyperspectralremote sensing data analysis and future challenges, IEEE Geosci. Remote Sens. Mag., vol. 1, no. 2, p.6–36, (2013).

DOI: 10.1109/mgrs.2013.2244672

Google Scholar

[3] X. Jia, B. -C. Kuo, and M. M. Crawford, Feature mining for hyperspectral image classification, Proc. IEEE, vol. 101, no. 3, p.676–697, (2013).

DOI: 10.1109/jproc.2012.2229082

Google Scholar

[4] P. Mitra, C. Murthy, and S. K. Pal, Unsupervised feature selection using feature similarity, IEEE Trans. Pattern Anal. Mach. Intell., vol. 24, no. 3, p.301–312, (2002).

DOI: 10.1109/34.990133

Google Scholar

[5] M. Raymer, W. Punch, E. Goodman, L. Kuhn, and A. Jain, Dimensionality reduction using genetic algorithms, IEEE Trans. Evol. Comput., vol. 4, no. 2, p.164–171, (2000).

DOI: 10.1109/4235.850656

Google Scholar

[6] L. Zhang, Y. Zhong, B. Huang, J. Gong, and P. Li, Dimensionality reduction based on clonal selection for hyperspectral imagery, IEEE Trans. Geosci. Remote Sens., vol. 45, no. 12, p.4172–4186, (2007).

DOI: 10.1109/tgrs.2007.905311

Google Scholar

[7] M. Farrell Jr and R. Mersereau, On the impact of pca dimension reduction for hyperspectral detection of difficult targets, IEEE Geosci. Remote Sens. Lett., vol. 2, no. 2, p.192–195, (2005).

DOI: 10.1109/lgrs.2005.846011

Google Scholar

[8] C. -I. Chang and Q. Du, Interference and noise-adjusted principal components analysis, IEEE Trans. Geosci. Remote Sens., vol. 37, no. 5, p.2387–2396, (1999).

DOI: 10.1109/36.789637

Google Scholar

[9] J. Wen, Z. Tian, H. She, and W. Yan, Feature extraction of hyperspectral images based on preserving neighborhood discriminant embedding, in Proc. IEEE IASP, 2010, p.257–262.

DOI: 10.1109/iasp.2010.5476119

Google Scholar

[10] W. Li, S. Prasad, J. Fowler, and L. Bruce, Locality preserving dimensionality reduction and classification for hyperspectral image analysis, IEEE Trans. Geosci. Remote Sens., vol. 50, no. 4, p.1185–1198, (2012).

DOI: 10.1109/tgrs.2011.2165957

Google Scholar

[11] X. Huang and L. Zhang, Comparison of vector stacking, multi-svms fuzzy output, and multi-svms voting methods for multiscale vhr urban mapping, IEEE Geosci. Remote Sens. Lett., vol. 7, no. 2, p.261–265, (2010).

DOI: 10.1109/lgrs.2009.2032563

Google Scholar

[12] De la Torre, Fernando. A least-squares framework for component analysis., IEEE Trans. Pattern Anal. Mach. Intell., vol. 34, no. 6 , pp.1041-1055, (2012).

DOI: 10.1109/tpami.2011.184

Google Scholar

[13] T. Zhang, D. Tao, X. Li, and J. Yang, Patch alignment for dimensionality reduction, IEEE Trans. Knowl. Data Eng., vol. 21, no. 9, p.1299–1313, Sep. (2009).

DOI: 10.1109/tkde.2008.212

Google Scholar

[14] T. Xia, D. Tao, T. Mei, and Y. Zhang, Multiview spectral embedding, IEEE Trans. Syst., Man, Cybern. B, Cybern., vol. 60, no. 6, p.1438–1446, Dec. (2010).

DOI: 10.1109/tsmcb.2009.2039566

Google Scholar

[15] L. Zhang, L. Zhang, D. Tao, and X. Huang, On combining multiple features for hyperspectral remote sensing image classification, IEEE Trans. Geosci. Remote Sens., vol. 50, no. 3, p.879–893, (2012).

DOI: 10.1109/tgrs.2011.2162339

Google Scholar

[16] G.H. Golub and C.F. Van Loan, Matrix Computations. The Johns Hopkins Univ. Press, (1996).

Google Scholar

[17] D. Landgrebe, Signal Theory Methods in Multispectral Remote Sensing. New Jersey: Wiley, (2003).

Google Scholar

[18] J. A. Benediktsson, J. A. Palmason, and J. R. Sveinsson, Classification of hyperspectral data from urban areas based on extended morphological profiles, IEEE Trans. Geosci. Remote Sens., vol. 43, no. 3, p.480–491, (2005).

DOI: 10.1109/tgrs.2004.842478

Google Scholar

[19] C. -C. Chang and C. -J. Lin, LIBSVM: A library for support vector machines, ACM Trans. Intell. Syst. Technol., vol. 2, p.27: 1–27: 27, 2011, software available at http: /www. csie. ntu. edu. tw/ cjlin/libsvm.

DOI: 10.1145/1961189.1961199

Google Scholar