[1]
J. Solomon and B. Rock, Imaging spectrometry for earth remote sensing, Science, vol. 228, p.1147–1153, (1985).
Google Scholar
[2]
J. Bioucas-Dias, A. Plaza, G. Camps-Valls, P. Scheunders,N. Nasrabadi, and J. Chanussot, Hyperspectralremote sensing data analysis and future challenges, IEEE Geosci. Remote Sens. Mag., vol. 1, no. 2, p.6–36, (2013).
DOI: 10.1109/mgrs.2013.2244672
Google Scholar
[3]
X. Jia, B. -C. Kuo, and M. M. Crawford, Feature mining for hyperspectral image classification, Proc. IEEE, vol. 101, no. 3, p.676–697, (2013).
DOI: 10.1109/jproc.2012.2229082
Google Scholar
[4]
P. Mitra, C. Murthy, and S. K. Pal, Unsupervised feature selection using feature similarity, IEEE Trans. Pattern Anal. Mach. Intell., vol. 24, no. 3, p.301–312, (2002).
DOI: 10.1109/34.990133
Google Scholar
[5]
M. Raymer, W. Punch, E. Goodman, L. Kuhn, and A. Jain, Dimensionality reduction using genetic algorithms, IEEE Trans. Evol. Comput., vol. 4, no. 2, p.164–171, (2000).
DOI: 10.1109/4235.850656
Google Scholar
[6]
L. Zhang, Y. Zhong, B. Huang, J. Gong, and P. Li, Dimensionality reduction based on clonal selection for hyperspectral imagery, IEEE Trans. Geosci. Remote Sens., vol. 45, no. 12, p.4172–4186, (2007).
DOI: 10.1109/tgrs.2007.905311
Google Scholar
[7]
M. Farrell Jr and R. Mersereau, On the impact of pca dimension reduction for hyperspectral detection of difficult targets, IEEE Geosci. Remote Sens. Lett., vol. 2, no. 2, p.192–195, (2005).
DOI: 10.1109/lgrs.2005.846011
Google Scholar
[8]
C. -I. Chang and Q. Du, Interference and noise-adjusted principal components analysis, IEEE Trans. Geosci. Remote Sens., vol. 37, no. 5, p.2387–2396, (1999).
DOI: 10.1109/36.789637
Google Scholar
[9]
J. Wen, Z. Tian, H. She, and W. Yan, Feature extraction of hyperspectral images based on preserving neighborhood discriminant embedding, in Proc. IEEE IASP, 2010, p.257–262.
DOI: 10.1109/iasp.2010.5476119
Google Scholar
[10]
W. Li, S. Prasad, J. Fowler, and L. Bruce, Locality preserving dimensionality reduction and classification for hyperspectral image analysis, IEEE Trans. Geosci. Remote Sens., vol. 50, no. 4, p.1185–1198, (2012).
DOI: 10.1109/tgrs.2011.2165957
Google Scholar
[11]
X. Huang and L. Zhang, Comparison of vector stacking, multi-svms fuzzy output, and multi-svms voting methods for multiscale vhr urban mapping, IEEE Geosci. Remote Sens. Lett., vol. 7, no. 2, p.261–265, (2010).
DOI: 10.1109/lgrs.2009.2032563
Google Scholar
[12]
De la Torre, Fernando. A least-squares framework for component analysis., IEEE Trans. Pattern Anal. Mach. Intell., vol. 34, no. 6 , pp.1041-1055, (2012).
DOI: 10.1109/tpami.2011.184
Google Scholar
[13]
T. Zhang, D. Tao, X. Li, and J. Yang, Patch alignment for dimensionality reduction, IEEE Trans. Knowl. Data Eng., vol. 21, no. 9, p.1299–1313, Sep. (2009).
DOI: 10.1109/tkde.2008.212
Google Scholar
[14]
T. Xia, D. Tao, T. Mei, and Y. Zhang, Multiview spectral embedding, IEEE Trans. Syst., Man, Cybern. B, Cybern., vol. 60, no. 6, p.1438–1446, Dec. (2010).
DOI: 10.1109/tsmcb.2009.2039566
Google Scholar
[15]
L. Zhang, L. Zhang, D. Tao, and X. Huang, On combining multiple features for hyperspectral remote sensing image classification, IEEE Trans. Geosci. Remote Sens., vol. 50, no. 3, p.879–893, (2012).
DOI: 10.1109/tgrs.2011.2162339
Google Scholar
[16]
G.H. Golub and C.F. Van Loan, Matrix Computations. The Johns Hopkins Univ. Press, (1996).
Google Scholar
[17]
D. Landgrebe, Signal Theory Methods in Multispectral Remote Sensing. New Jersey: Wiley, (2003).
Google Scholar
[18]
J. A. Benediktsson, J. A. Palmason, and J. R. Sveinsson, Classification of hyperspectral data from urban areas based on extended morphological profiles, IEEE Trans. Geosci. Remote Sens., vol. 43, no. 3, p.480–491, (2005).
DOI: 10.1109/tgrs.2004.842478
Google Scholar
[19]
C. -C. Chang and C. -J. Lin, LIBSVM: A library for support vector machines, ACM Trans. Intell. Syst. Technol., vol. 2, p.27: 1–27: 27, 2011, software available at http: /www. csie. ntu. edu. tw/ cjlin/libsvm.
DOI: 10.1145/1961189.1961199
Google Scholar