Microstructural Analysis and Wear Behavior of Cryogenically Treated Ti-6Al-4V Alloy

Article Preview

Abstract:

This paper helps in understanding the effects of cryogenic treatment on microstructural variation, hardness and wear behavior of Ti-6Al-4V alloy. The microstructure indicates white β-phase dispersed on the grain boundaries of dark α-phase. Cryogenic treatment at-186 °C for 10 h led to the transformation from β-phase to α-phase, resulting in coarsening of α. Hardness of the cryogenically treated sample was observed to decrease and wear loss was observed to increase; this can be attributed to the coarsening of α-phase.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1331-1335

Citation:

Online since:

July 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S.J. Li, R. Yang, S. Li, Y.L. Hao, Y.Y. Cui, M. Niinomi, Z.X. Guo: Wear vol 257 (2004), p.896.

Google Scholar

[2] C. Ohkubo, I. Shimura, T. Aoki, S. Hanatani, T. Hosoi, M. Hattori, Y. Oda, T. Okabe: Biomaterials vol 24 (2003), p.3377.

Google Scholar

[3] SY. Hong, Y. Ding, WC. Jeong: Int J Mach Tools Manuf vol 41(2001), p.2271.

Google Scholar

[4] X. Yang, CR. Liu: Mach Sci Technol vol 1 (1993), p.107.

Google Scholar

[5] H Dong, T Bell: Wear vol 238 (2000), p.131.

Google Scholar

[6] A. Molinari, G. Straffelini, B. Tesi, T. Bacci: Wear vol 208 (1997), p.105.

Google Scholar

[7] D.J. Kamody: Adv. Mater. Process. vol 155 (1999), p.67.

Google Scholar

[8] S.S. Gill, H. Singh, R. Singh, J. Singh: Int. J. Adv. Manuf. Technol vol 48 (2010), p.175.

Google Scholar

[9] F. Meng, K. Tagashira, H. Sohma: Scripta. Metall. Mater vol 31 (1994), p.865.

Google Scholar

[10] A. Bensely, S. Venkatesh, D.L. Mohan, G. Nagarajan, A. Rajadurai, K. Junik: Mat. Sci. Eng. A vol 479 (2008), p.229.

Google Scholar

[11] Gui-rong, Hong-ming Wang, Yun–Cai, Yu-tao Zhao, Jun-jie Wang and Simon P.A. Gill, International Journal of Minerals, Metallurgy and Materials Vol 20 (2013), p.896.

Google Scholar

[12] K. E. Lulay, K. Khan and D. Chaaya, J. Mater. Eng. Perform vol. 11 (2002), p.479.

Google Scholar

[13] D. S. Nadig, V. Ramakrishnan, P. Sampathkumaran, and C. S. Prashanth AIP Conf. Proc. vol 1435 (2012), p.133.

Google Scholar

[14] JW. Kim, JA. Griggs, JD. Regan, RA. Ellis, Z. Cai. Int Endod J vol 38 (2005), p.364.

Google Scholar

[15] Kaixuan Gu, Hong Zhang, Bing Zhao, Junjie Wang, Yuan Zhou and Zhiqiang Li: Materials Science & Engineering A Vol 584 (2013), p.170.

Google Scholar

[16] Kaixuan Gu, Junjie Wang, Yuan Zhou: Journal of the Mechanical Behavior of Biomedical Materials Vol 30, (2014), p.131.

Google Scholar

[17] Kaixuan Gu, Zhiqiang Li, Junjie Wang, Yuan Zhou, Hong Zhang, Bing Zhao, Wei Ji: Materials science forum vol 747 -748 (2013), p.899.

Google Scholar

[18] Titanium handbook, ASM International, The materials information society, (2000).

Google Scholar

[19] C. Courbona, F. Pusavecc, F. Dumontb, J. Rechb, J. Kopacc: Tribology International Volume 66, (2013), p.72.

Google Scholar