Synthesis and Characterization of Ti-TiB Composites Processed through Vacuum Sintering

Article Preview

Abstract:

In the present work, an attempt has been made to explore the general microstructural characteristics and mechanical properties of titanium-titanium boride (Ti-TiB) composites (20 and 40 vol.% TiB reinforcement in Ti matrix) processed by Vacuum Sintering. The microstructures of the composites were investigated using electron probe micro analysis, scanning electron microscopy and X-ray diffraction. Obviously, the elastic modulus, shear modulus and hardness are found to increase with increase in volume fraction of titanium boride. The effects of titanium boride reinforcements on elastic properties and microhardness are discussed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

765-769

Citation:

Online since:

July 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] B.V. Radhakrishnabhat, J. Subramanyam, V.V. Bhanuprasad, Preparation of Ti-TiB-TiC & Ti-TiB composites by in-situ reaction hot pressing. Mater. Sci. Eng. A 325 (2002) 126.

DOI: 10.1016/s0921-5093(01)01412-5

Google Scholar

[2] Yanbin Liu, Yong Liu, Huiping T, Bin W, Bin Liu. Fabrication and mechanical properties of in situ TiC/Ti metal matrix composites. Journal of alloys and compounds 2011: 509: 3592-3601.

DOI: 10.1016/j.jallcom.2010.12.086

Google Scholar

[3] Kim MG, Sung SY, Kim YJ. Synthesis of in-situ titanium carbide particle reinforced titanium composites. Materials science forum 2005: 475-479; 963-966.

DOI: 10.4028/www.scientific.net/msf.475-479.963

Google Scholar

[4] Ravi Chandran KS, Panda KB. Discontinuously reinforced titanium with titanium boride whiskers on the horizon. Advanced Material Processing 2002; 160: 59-62.

Google Scholar

[5] Courant B, Hantzpergue JJ, Avril L, Benayoun S. Structure and hardness of titanium surfaces carburized by pulsed laser melting with graphite addition. Journal of Materials Processing Technology 2005; 160: 374-81.

DOI: 10.1016/j.jmatprotec.2004.06.025

Google Scholar

[6] Sahay SS, Ravi Chandran KS, Atri R. Evolution of micro-structure and phases in situ processed Ti-TiB composites containing high volume fractions of TiB whiskers. Journal of Materials Research 1999; 14: 4214-23.

DOI: 10.1557/jmr.1999.0571

Google Scholar

[7] K. Geng, W. Lu, Z. Yang, D. Zhang, In situ preparation of titanium matrix composites reinforced by TiB and Nd2O3. Mater. Lett. 57 (2003) 4054-4057.

DOI: 10.1016/s0167-577x(03)00264-7

Google Scholar

[8] Cheloui H, Zhang H, Shen X, Wang F, Lee S. Microstructure and mechanical properties of Ti-TiB2 ceramic matrix composites fabricated by spark plasma sintering. Materials Science ad Engineering A 2011; 528: 3849-3853.

DOI: 10.1016/j.msea.2011.01.096

Google Scholar

[9] Shen Lu, Cheong WCD, Foo YL, Chen Z. Nanoindentation creep rate of tin and aluminium: A comparative study between constant load and constant strain rate methods. Materials Science ad Engineering A 2012; 532: 505-510.

DOI: 10.1016/j.msea.2011.11.016

Google Scholar

[10] Fischer-Cripps AC. Critical review of analysis and interpretation of nano-indentation test data. Surface and coating technology 2006; 200: 4153-65.

DOI: 10.1016/j.surfcoat.2005.03.018

Google Scholar

[11] P. Chandrasekar, V. Balusamy, K.S. Ravi Chandran, Harish kumar, Laser surface hardening of titanium-titanium boride (Ti-TiB) metal matrix composites. Scr. Mater. 56 (2007) 641-644.

DOI: 10.1016/j.scriptamat.2006.11.035

Google Scholar

[12] Y.L. Hao, M. Ninomi, D. Kuroda, F. Fukunaga, Y.L. Zhou, R. Yang, A. Suzuki. Young's modulus and mechanical properties of Ti-29Nb-13Ta-4. 6Zr in relation to α martensite. Metall. Mater. Trans. A 33 (2002) 3137-3144.

DOI: 10.1007/s11661-002-0299-7

Google Scholar

[13] S. Gorsse, J.P. Chaminade, Y. L. Petitcorps. In situ preparation of titanium base composites reinforced by TiB single crystals using a powder metallurgy technique. Compos. A 29 (1998) 1229-1234.

DOI: 10.1016/s1359-835x(98)00080-3

Google Scholar