Compaction Characteristics of Tungsten Carbide Based Self-Lubricant Cutting Tool Material

Article Preview

Abstract:

In this study, an attempt has been made to develop solid lubricant cutting tool material with the aid of powder metallurgy technique. Chosen tungsten carbide, cobalt and calcium fluoride were milled in the planetary ball milling, followed by uniaxial compaction and sintering in a tube furnace. Materials were milled at various hours of milling and compaction pressure to understand the effect of relative density and hardness of sintered specimens. It is found that the relative density of compacted and sintered specimens found to increase with the compaction pressure but decreased with milling time after particular time. From the investigation, 40 hr of milling and 400 MPa compaction pressure found to be suitable for the development of proposed material. In this work, sample density was measured by the Archimedes’ method and hardness was measured by Rockwell hardness tester.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

87-91

Citation:

Online since:

July 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] SA. Hewitt, KA. Kibble, Effects of ball milling time on the synthesis and consolidation of nanostructured WC-Co composites, Int J Refract Met Hard Mater. 27 (2009) 937-948.

DOI: 10.1016/j.ijrmhm.2009.05.006

Google Scholar

[2] N. Showaiter, M. Youseffi, Compaction, sintering and mechanical properties of elemental Al powder with and without sintering aids, Mater Design. 29 (2008) 752-762.

DOI: 10.1016/j.matdes.2007.01.027

Google Scholar

[3] D. Poquillon, J. Lemaitre, V. Baco Carles, Ph. Tailhades, J. Lacaze, Cold compaction of iron powders-relations between powder morphology and mechanical properties PartI: Powder preparation and compaction, Powder Technol. 126 (2002) 65-74.

DOI: 10.1016/s0032-5910(02)00034-7

Google Scholar

[4] M. Taha, J. Palette, Y. Jorand, G. Fantozzi, A. Samdi, M. Jebroum, B. Durand, Compaction and sintering behaviour of zirconia powders, J. Euro Ceram. Soc. 15 (1995) 759-768.

DOI: 10.1016/0955-2219(95)00002-c

Google Scholar

[5] K. Yamaguchi, N. Takakura, S. Imatani, Compaction and sintering characteristics of composite metal powders, J. Mater. Process. Technol. 63 (1997) 364-369.

DOI: 10.1016/s0924-0136(96)02648-9

Google Scholar

[6] K. Jia, T.E. Fischer, B. Gallois, Microstructure, hardness and toughness of nanostructured and conventional WC-Co composites, Nano Structured Materials. 10(5) (1998) 875-891.

DOI: 10.1016/s0965-9773(98)00123-8

Google Scholar

[7] H. Zhang, Q. Lu, L. Zhang, Z.Z. Fang, Dependence of microcrack number density on microstructural parameters during plastic deformation of WC-Co composite, Int J Refract Met Hard Mater. 28 (2010) 434-440.

DOI: 10.1016/j.ijrmhm.2010.01.005

Google Scholar

[8] AS. Khan, B. Farrokh, L. Takacs, Effect of grain refinement on mechanical properties of ball-milled bulk aluminum, Mater. Sci. Eng. A. 489 (2008) 77-84.

DOI: 10.1016/j.msea.2008.01.045

Google Scholar

[9] J.L. Grosseau Poussard, X. Milhet, C. Huvier, J.F. Dinhut, Consolidation of iron powders through the influence of phosphate thin films, J. Mater. Process. Technol. 205 (2008) 151-159.

DOI: 10.1016/j.jmatprotec.2007.11.123

Google Scholar

[10] M. Mahmoodan, H. Aliakbarzadeh, R. Gholamipour, Microstructural and mechanical characterization of high energy ball milled and sintered WC-10 wt%Co–xTaC nano powders, Int J Refract Met Hard Mater. 27 (2009) 801-805.

DOI: 10.1016/j.ijrmhm.2009.02.001

Google Scholar

[11] BP. Saha, Vinoth Kumar, S.V. Joshi, A. Balakrishnan, CL. Martin, Investigation of compaction behavior of alumina nano powder, Powder Technol. 224 (2012) 90-95.

DOI: 10.1016/j.powtec.2012.02.033

Google Scholar

[12] S. Senthilvelan, PS. Robi, Processing of self lubricating cutting tool material, Proceedings of 17th International Symposium Processing and Fabrication of Advanced Materials, Indian Institute of Technology Delhi. (2008) 193-201.

Google Scholar

[13] A. Muthuraja, S. Senthilvelan: Submitted to Procedia material science (2014).

Google Scholar

[14] P. Garg, SJ. Park, RM. German, Effect of die compaction pressure on densification behavior of molybdenum powders, Int J Refract Met Hard Mater. 25 (2007) 16-24.

DOI: 10.1016/j.ijrmhm.2005.10.014

Google Scholar

[15] S. Sivasankaran, K. Sivaprasad, R. Narayanasamy, Vijay Kumar Iyer, An investigation on flowability and compressibility of AA 6061- x wt. % TiO2 micro and nano composite powder prepared by blending and mechanical alloying, Powder Technol. 201 (2010).

DOI: 10.1016/j.powtec.2010.03.013

Google Scholar

[16] H.A. Al-Qureshi, A. Galiotto, A.N. Klien, On the mechanics of cold die compaction for powder metallurgy, J. Mater. Process. Technol. 166 (2005) 135-143.

DOI: 10.1016/j.jmatprotec.2004.08.009

Google Scholar

[17] A. Balakrishnan, P. Pizette, C.L. Martin, S.V. Joshi, B.P. Saha, Effect of particle size in aggregated and agglomerated ceramic powders, Acta Mater. 58 (2010) 802-812.

DOI: 10.1016/j.actamat.2009.09.058

Google Scholar

[18] J.B. Fogagnolo, F. Velasco, M.H. Robert, J.M. Torralba, Effect of mechanical alloying on the morphology, microstructure and properties of aluminium matrix composite powders, Mater. Sci. Eng. A. 342 (2003) 131-143.

DOI: 10.1016/s0921-5093(02)00246-0

Google Scholar