A Novel Wireless Thermal Convection Type Inclinometer by Using Non-Floating Structure

Article Preview

Abstract:

This research proposes a novel wireless RFID-based thermal convection type inclinometer by using non-floating structure without a cavity in the substrate. Four new ideas are presented. The first one is to make the device on a flexible substrate, thus it can save more energy than the traditional silicon. The second one is to integrate both an inclinometer and a wireless RFID antenna on the same substrate, such that it is a wireless device and very convenient for usage. The third idea is to fill xenon gas in the chamber with hemi-spherical or hemi-cylindrical shape instead of the previous one with carbon dioxide and rectangular shape. Because the xenon gas would not produce oxidization effect to the heater, so it would be more reliable. The fourth idea is to use non-floating structure instead of the floating one. The results by using floating structure with xenon and CO2 gases are studied the first; but the sensitivity performances are not good. Note that the sensitivities for the proposed non-floating structure by using hemi-spherical chamber filled with xenon and CO2 gases are better, and the one of the former is better than the latter by 70%. On the other hand, the response speed (step-input of tilted angle) by using hemi-cylindrical chamber with xenon gas is the quickest, the average response time is 545μs, while the hemi-spherical chamber filled with CO2 is the slowest, and the average response time is 748μs.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

243-249

Citation:

Online since:

July 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Billata, H. Glosch, M Kunze, F. Hedrich, J. Frech, J. Auber, H. Sandmaier, W. Wimmer and W. Lang: Micromachined inclinometer with high sensitivity and very good stability, Sensors and Actuators A: Physical, 2002, 97-98, (1), 125-13.

DOI: 10.1016/s0924-4247(01)00824-x

Google Scholar

[2] S. Billat, H. Glosch, M. Kunze, F. Hedrich, J. Frech, J. Auber, H. Sandmaier, W. Wimmer and W. Lang: Convection based micro- machined inclinometer using SOI technology, MEMS 01, 2001, 159-161.

DOI: 10.1109/memsys.2001.906504

Google Scholar

[3] M. A. Adams, P. Dolan, C. Marx and W. C. Hutton: An electronic inclinometer technique for measuring lumbar curvature, Clinical Biomechanics, 1986, 1, (3), 130-134.

DOI: 10.1016/0268-0033(86)90002-1

Google Scholar

[4] Frazão, R. Falate, J. L. Fabris, J. L. Santos, L. A. Ferreira and F. M. Araújo: Optical inclinometer based on a single long-period fiber grating combined with a fused taper, Optics Letters, 2006, 31, (20), 2960-2962.

DOI: 10.1364/ol.31.002960

Google Scholar

[5] A. G. Butler, D. G. Green and R. E. Nagle: Inclinometer, US patent US 4912662 A, (1990).

Google Scholar

[6] S. Üşümez and M. Orhan: Inclinometer method for recording and transferring natural head position in cephalometrics, American Journal of Orthodontics and Dentofacial Orthopedics, 2001, 120, (6), 664-670.

DOI: 10.1067/mod.2001.117201

Google Scholar

[7] Ascia, S. Baglio and N. Savalli: A novel ferrofluidic inclinometer, Instrumentation and Measurement, 2007, 56, (4), 1114-1123.

DOI: 10.1109/tim.2007.899870

Google Scholar

[8] R. R. Baxter, S. Ohno, S. D. Hawley and D. M. Wilson: On a micromachined fluidic inclinometer, 12th International Conference on, 2003, Transducers, Solid-State Sensors, Actuators and Microsystems, 2003, 2, 1279-1282.

DOI: 10.1109/sensor.2003.1217006

Google Scholar

[9] A. M. Leung, J. Jones, E. Czyzewska, J. Chen and B. Woods: Micromachined accelerometer based on convection heat transfer, MEMS 98, 1998, 627-630.

DOI: 10.1109/memsys.1998.659830

Google Scholar

[10] V. Milanovic, E. Bowen, Nim Tea, J. Suehle, B. Payne, M. Zaghloul and M. Gaitan: Convection based accelerometer and tilt sensor implemented in standard CMOS, MEMS 98, 1998, 487-490.

DOI: 10.1115/imece1998-1289

Google Scholar

[11] J. van Honschoten, J. van Baar, H. E. de Bree, T. Lammerink, G. Krijnen and J. M. Elwenspoek: Application of a microflown as a low-cost level sensor, Micromech. Microeng. , 2000, 10, 250-253.

DOI: 10.1088/0960-1317/10/2/324

Google Scholar

[12] Y. Zhao and Y. Y. Cai: Temperature-gradient cancellation technique and device, US Patent US 7, 862, 229 B2, (2011).

Google Scholar

[13] B. Alain, R. Alain, V. Bernard, G. Alain: Thermal accelerometer with reduced sensitivity to an external magnetic field, European Patent EP1550874 B1, (2010).

Google Scholar

[14] G. Daia, M. Li, X. P. He, L. M. Du, B. B. Shao and W. Su: Thermal drift analysis using a multiphysics model of bulk silicon MEMS capacitive accelerometer, Sensors and Actuators A: Physical, 2011, 172, (2), 369-378.

DOI: 10.1016/j.sna.2011.09.016

Google Scholar

[15] A. H. Ma and A. M. Leung: Three-axis thermal accelerometer based on buckled cantilever microstructure, IEEE Sensors, 2008, 1492-1495.

DOI: 10.1109/icsens.2008.4716728

Google Scholar

[16] J. Courteaud, P. Combette, N. Crespy, G. Cathebras and A. Giani: Thermal simulation and experimental results of a micromachined thermal inclinometer, Sensors and Actuators A: Physical, 2008, 141, (2), 307-313.

DOI: 10.1016/j.sna.2007.09.008

Google Scholar

[17] S. Petra, E. F. Bernhard, F. Knut, S. Dagmar and H. Jan: Lumbar range of motion: reliability and validity of the inclinometer technique in the clinical measurement of trunk flexibility, Diagnostic Imaging and Testing, 1996, 21, (11), 1332-1338.

DOI: 10.1097/00007632-199606010-00011

Google Scholar

[18] R. Williams, J. Binkley, R. Bloch, C. H. Goldsmith and T. Minuk: Reliability of the modified-modified schöber and double inclinometer methods for measuring lumbar flexion and extension, Journal of the American Physical Therapy Association, 1993, 73, (1), 26-37.

DOI: 10.1093/ptj/73.1.26

Google Scholar

[19] S. L. Cornbleet and N. B. Woolsey: Assessment of hamstring muscle length in school-aged children using the sit-and-reach test and the inclinometer measure of hip joint angle, Physical Therapy, 1996, 76, (8), 50-855.

DOI: 10.1093/ptj/76.8.850

Google Scholar

[20] M. Eva-Maj, K. Mikael, M. Agneta and M. Måns: Zebris versus myrin: a comparative study between a three-dimensional ultrasound movement analysis and an inclinometer/compass method: intradevice reliability, concurrent validity, intertester comparison, intratester reliability, and intraindividual variability, Spine, 2003, 28, (21), E433-E440.

DOI: 10.1097/01.brs.0000090840.45802.d4

Google Scholar

[21] A. F. de Winter, M. AMB. Heemskerk, C. B. Terwee, M. P. Jans, W. Devillé, D-J. V. Schaardenburg, R. JPM. Scholten and L. M. Bouter: Inter-observer reproducibility of measurements of range of motion in patients with shoulder pain using a digital inclinometer, BMC Musculoskeletal Disorders, 2004, 18, (5), 1-8.

DOI: 10.1186/1471-2474-5-18

Google Scholar

[22] M. R. Akella, J. T. Halberta and G. R. Kotamrajub: Rigid body attitude control with inclinometer and low-cost gyro measurements, Systems and Control Letters, 2003, 49, (2), 151-159.

DOI: 10.1016/s0167-6911(02)00320-1

Google Scholar

[23] S. Üşümez and M. Orhan: Eproducibility of natural head position measured with an inclinometer, American Journal of Orthodontics and Dentofacial Orthopedics, 2003, 123, (4), 451-454.

DOI: 10.1067/mod.2003.71

Google Scholar