[1]
S. Billata, H. Glosch, M Kunze, F. Hedrich, J. Frech, J. Auber, H. Sandmaier, W. Wimmer and W. Lang: Micromachined inclinometer with high sensitivity and very good stability, Sensors and Actuators A: Physical, 2002, 97-98, (1), 125-13.
DOI: 10.1016/s0924-4247(01)00824-x
Google Scholar
[2]
S. Billat, H. Glosch, M. Kunze, F. Hedrich, J. Frech, J. Auber, H. Sandmaier, W. Wimmer and W. Lang: Convection based micro- machined inclinometer using SOI technology, MEMS 01, 2001, 159-161.
DOI: 10.1109/memsys.2001.906504
Google Scholar
[3]
M. A. Adams, P. Dolan, C. Marx and W. C. Hutton: An electronic inclinometer technique for measuring lumbar curvature, Clinical Biomechanics, 1986, 1, (3), 130-134.
DOI: 10.1016/0268-0033(86)90002-1
Google Scholar
[4]
Frazão, R. Falate, J. L. Fabris, J. L. Santos, L. A. Ferreira and F. M. Araújo: Optical inclinometer based on a single long-period fiber grating combined with a fused taper, Optics Letters, 2006, 31, (20), 2960-2962.
DOI: 10.1364/ol.31.002960
Google Scholar
[5]
A. G. Butler, D. G. Green and R. E. Nagle: Inclinometer, US patent US 4912662 A, (1990).
Google Scholar
[6]
S. Üşümez and M. Orhan: Inclinometer method for recording and transferring natural head position in cephalometrics, American Journal of Orthodontics and Dentofacial Orthopedics, 2001, 120, (6), 664-670.
DOI: 10.1067/mod.2001.117201
Google Scholar
[7]
Ascia, S. Baglio and N. Savalli: A novel ferrofluidic inclinometer, Instrumentation and Measurement, 2007, 56, (4), 1114-1123.
DOI: 10.1109/tim.2007.899870
Google Scholar
[8]
R. R. Baxter, S. Ohno, S. D. Hawley and D. M. Wilson: On a micromachined fluidic inclinometer, 12th International Conference on, 2003, Transducers, Solid-State Sensors, Actuators and Microsystems, 2003, 2, 1279-1282.
DOI: 10.1109/sensor.2003.1217006
Google Scholar
[9]
A. M. Leung, J. Jones, E. Czyzewska, J. Chen and B. Woods: Micromachined accelerometer based on convection heat transfer, MEMS 98, 1998, 627-630.
DOI: 10.1109/memsys.1998.659830
Google Scholar
[10]
V. Milanovic, E. Bowen, Nim Tea, J. Suehle, B. Payne, M. Zaghloul and M. Gaitan: Convection based accelerometer and tilt sensor implemented in standard CMOS, MEMS 98, 1998, 487-490.
DOI: 10.1115/imece1998-1289
Google Scholar
[11]
J. van Honschoten, J. van Baar, H. E. de Bree, T. Lammerink, G. Krijnen and J. M. Elwenspoek: Application of a microflown as a low-cost level sensor, Micromech. Microeng. , 2000, 10, 250-253.
DOI: 10.1088/0960-1317/10/2/324
Google Scholar
[12]
Y. Zhao and Y. Y. Cai: Temperature-gradient cancellation technique and device, US Patent US 7, 862, 229 B2, (2011).
Google Scholar
[13]
B. Alain, R. Alain, V. Bernard, G. Alain: Thermal accelerometer with reduced sensitivity to an external magnetic field, European Patent EP1550874 B1, (2010).
Google Scholar
[14]
G. Daia, M. Li, X. P. He, L. M. Du, B. B. Shao and W. Su: Thermal drift analysis using a multiphysics model of bulk silicon MEMS capacitive accelerometer, Sensors and Actuators A: Physical, 2011, 172, (2), 369-378.
DOI: 10.1016/j.sna.2011.09.016
Google Scholar
[15]
A. H. Ma and A. M. Leung: Three-axis thermal accelerometer based on buckled cantilever microstructure, IEEE Sensors, 2008, 1492-1495.
DOI: 10.1109/icsens.2008.4716728
Google Scholar
[16]
J. Courteaud, P. Combette, N. Crespy, G. Cathebras and A. Giani: Thermal simulation and experimental results of a micromachined thermal inclinometer, Sensors and Actuators A: Physical, 2008, 141, (2), 307-313.
DOI: 10.1016/j.sna.2007.09.008
Google Scholar
[17]
S. Petra, E. F. Bernhard, F. Knut, S. Dagmar and H. Jan: Lumbar range of motion: reliability and validity of the inclinometer technique in the clinical measurement of trunk flexibility, Diagnostic Imaging and Testing, 1996, 21, (11), 1332-1338.
DOI: 10.1097/00007632-199606010-00011
Google Scholar
[18]
R. Williams, J. Binkley, R. Bloch, C. H. Goldsmith and T. Minuk: Reliability of the modified-modified schöber and double inclinometer methods for measuring lumbar flexion and extension, Journal of the American Physical Therapy Association, 1993, 73, (1), 26-37.
DOI: 10.1093/ptj/73.1.26
Google Scholar
[19]
S. L. Cornbleet and N. B. Woolsey: Assessment of hamstring muscle length in school-aged children using the sit-and-reach test and the inclinometer measure of hip joint angle, Physical Therapy, 1996, 76, (8), 50-855.
DOI: 10.1093/ptj/76.8.850
Google Scholar
[20]
M. Eva-Maj, K. Mikael, M. Agneta and M. Måns: Zebris versus myrin: a comparative study between a three-dimensional ultrasound movement analysis and an inclinometer/compass method: intradevice reliability, concurrent validity, intertester comparison, intratester reliability, and intraindividual variability, Spine, 2003, 28, (21), E433-E440.
DOI: 10.1097/01.brs.0000090840.45802.d4
Google Scholar
[21]
A. F. de Winter, M. AMB. Heemskerk, C. B. Terwee, M. P. Jans, W. Devillé, D-J. V. Schaardenburg, R. JPM. Scholten and L. M. Bouter: Inter-observer reproducibility of measurements of range of motion in patients with shoulder pain using a digital inclinometer, BMC Musculoskeletal Disorders, 2004, 18, (5), 1-8.
DOI: 10.1186/1471-2474-5-18
Google Scholar
[22]
M. R. Akella, J. T. Halberta and G. R. Kotamrajub: Rigid body attitude control with inclinometer and low-cost gyro measurements, Systems and Control Letters, 2003, 49, (2), 151-159.
DOI: 10.1016/s0167-6911(02)00320-1
Google Scholar
[23]
S. Üşümez and M. Orhan: Eproducibility of natural head position measured with an inclinometer, American Journal of Orthodontics and Dentofacial Orthopedics, 2003, 123, (4), 451-454.
DOI: 10.1067/mod.2003.71
Google Scholar