[1]
J. Chattopadhyay, R.R. Sarkar, S. Mandal, Toxin producing plankton may act as a biological control for planktonic blooms: A field study and mathematical modeling. Journal of Theoretical Biology, 215, 333-344, (2002).
DOI: 10.1006/jtbi.2001.2510
Google Scholar
[2]
T. Saha, M. Bandyopadhyay, Dynamical analysis of toxin producing phytoplankton–zooplankton interactions. Nonlinear Anal., Real World Appl. 10, 314–332, (2009).
DOI: 10.1016/j.nonrwa.2007.09.001
Google Scholar
[3]
G.R. Dai, M.X. Tang, Coexistence region and global dynamics of a harvested predator-prey system, Siam J. App. Math., 58(1), 193-210, (1998).
DOI: 10.1137/s0036139994275799
Google Scholar
[4]
T. Das, et al., Harvesting of a prey-predator fishery in the presence of toxicity, Applied Mathematical Modelling, 33(5), 2282-2292, (2009).
DOI: 10.1016/j.apm.2008.06.008
Google Scholar
[5]
Y.F. Lv, Y.Z. Pei, S.J. Gao, C.G. Li, Harvesting of a phytoplankton-zooplankton model, Nonlinear Analysis: Real World Applications 11, 3608-3619, (2010).
DOI: 10.1016/j.nonrwa.2010.01.007
Google Scholar
[6]
Y. Wang, W.H. Jiang, H.B. Wang, Stability and global Hopf bifurcation in toxic phytoplankton–zooplankton model with delay and selective harvesting, Nonlinear Dyn., 73: 881–896, (2013).
DOI: 10.1007/s11071-013-0839-2
Google Scholar
[7]
K.J. Arrow, M. Kurz, Public Investment, The Rate of Return and Optimal Fiscal Policy, John Hopkins, Baltimore, (1970).
Google Scholar
[8]
L.S. Pontryagin, V.S. Boltyanski Gamkrelidze, E.F. Mishchenco, The Mathematical Theory Of Optimal Processes, Wiley, New York, (1987).
Google Scholar