Electromagnetic Coupling Reduction in Microstrip Antenna Arrays Using Single-Negative Electric Waveguided Metamaterials

Article Preview

Abstract:

A single-negative electric waveguided metamaterial (WG-MTM) is proposed using folded complementary split single ring resonator (FCSSRR) to reduce mutual coupling in antenna arrays for MIMO applications. The WG-MTM is investigated numerically, which proved to exhibit electric resonance and band-gap property. Two antenna arrays have been designed, fabricated and measured. By inserting the electric negative metamaterial, a mutual coupling reduction of 9.2dB has been achieved with an edge-to-edge distance less than 0.17 (where is the operating wavelength). Moreover, the metamaterial loaded antenna has better far-field radiation patterns compared with the reference antenna. Thus, this novel structure not only has good coupling reduction ability, but also can optimize the performances of the antennas.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

816-821

Citation:

Online since:

July 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. Wallace, M. Jensen, A. Swindlehurst, and B. Jeffs, Experimental characterization of the MIMO wireless channel: Data acquisition and analysis, IEEE Trans. Wireless Commun., vol. 2, no. 2, p.335–343, Mar. (2003).

DOI: 10.1109/twc.2003.808975

Google Scholar

[2] C. A. Balanis, Antenna Theory Analysis and Design. Hoboken, NJ: Wiley, (2005).

Google Scholar

[3] B. Bhattacharyya, Input resistances of horizontal electric and vertical magnetic dipoles over a homogeneous ground, IEEE Trans. AntennasPropag., vol. 11, no. 3, p.261–266, May (1963).

DOI: 10.1109/tap.1963.1138039

Google Scholar

[4] F. -G. Zhu, J. -D. Xu, and Q. Xu, Reduction of mutual coupling between closely-packed antenna elements using defected ground structure, Electron Lett 45 (2009), 601–602.

DOI: 10.1049/el.2009.0985

Google Scholar

[5] S. Farsi, H. Aliakbarian, B. Nauwelaers, and G.A.E. Vandenbosch, Mutual coupling reduction between planar antenna by using a simple microstrip U-section, IEEE Antennas Wireless Propag Lett 11 (2012), 1501–1503.

DOI: 10.1109/lawp.2012.2232274

Google Scholar

[6] D. Guha, S. Biswas, T. Joseph, M.T. Sebastian, Defected ground structure to reduce mutual coupling between cylindrical dielectric resonator antennas, Electron Lett 44 (2008), 836–837.

DOI: 10.1049/el:20081189

Google Scholar

[7] F. Yang and Y. Rahmat-Samii, Microstrip antennas integrated with electromagnetic band-gap (EBG) structures: A low mutual coupling design for array applications, IEEE Trans. Antennas Propag., vol. 51, no. 10, p.2936–2946, Oct. (2003).

DOI: 10.1109/tap.2003.817983

Google Scholar

[8] M. Coulombe, K. S. Farzaneh, and C. Caloz, Compact elongated mushroom (EM)-EBG structure for enhancement of patch antenna array performances, IEEE Trans. Antennas Propag., vol. 58, no. 4, p.1076–1086, Apr. (2010).

DOI: 10.1109/tap.2010.2041152

Google Scholar

[9] S. D. Assimonis, T. V. Yioultsis, and C. S. Antonopoulos, Computational investigation and design of planar EBG structures for coupling reduction in antenna applications, IEEE Trans. Magn., vol. 48, no. 2, p.771–774, Feb. (2012).

DOI: 10.1109/tmag.2011.2172680

Google Scholar

[10] M. M. Bait-Suwailam, M. S. Boybay, and O. M. Ramahi, Electromagnetic Coupling Reduction in High-Profile Monopole Antennas Using Single-Negative Magnetic Metamaterials for MIMO Applications, IEEE Trans. Antennas Propag., vol. 58, no. 9, p.2894–2902, Sep., (2010).

DOI: 10.1109/tap.2010.2052560

Google Scholar

[11] H. -X. Xu, G. -M. Wang, M. -Q. Qi, and H. -Y. Zeng, Ultra-small single-negative electric metamaterials for electromagnetic coupling reduction of microstrip antenna array, Opt. Exp., vol. 20, no. 20, p.21968–21976, (2012).

DOI: 10.1364/oe.20.021968

Google Scholar

[12] R. Marqués, F. Martín, and M. Sorolla, Metamaterials With Negative Parameters: Theory, Design and Microwave Applications. Hoboken, NJ: Wiley, (2008).

DOI: 10.1002/9780470191736

Google Scholar

[13] X. Chen, T. M. Grzegorczyk, B. -I. Wu, J. Pacheco, Jr., and J. A. Kong, Robust method to retrieve the constitutive effective parameters of metamaterials, Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(1), 016608 (2004).

DOI: 10.1103/physreve.70.016608

Google Scholar