Numerical Prediction of the Magneto Plasma Dynamic Thrusters’ Performance

Article Preview

Abstract:

The performance of the magnetoplasmadynamic thruster is predicted using numerical simulation. The thruster mode is self-induced magnetic field with cylindrical electrodes. The dependence of the thrust level, specific impulse, and the mass flow rate in different total electric currents is investigated. The AUSM+ scheme is utilized to develop a numerical procedure and the accurate method is used to simulate the propellant injection rate. Besides the performance curves prediction, the results show the importance of the effect of inlet modeling on the thruster’s actual specific impulse.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

239-243

Citation:

Online since:

July 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] P. G. Mikellides: Modeling and Analysis of a Megawatt-Class Magnetoplasmadynamic Thruster Journal of Propulsion and Power, Vol. 20, No. 2, (2004), p.204.

DOI: 10.2514/1.9246

Google Scholar

[2] M. Auweter-Kurtz, H. L. Kurtz, H. O. Schrade and P. C. Sleziona: Numerical Modelinf of the Flow Discharge in MPD Thrusters Journal of Propulsion and Power, Vol. 5, No. 1, (1989), p.49.

DOI: 10.2514/6.1987-1091

Google Scholar

[3] J. Heierman and M. Auweter-Kurtz: Numerical and Experimental Investigation of the Current Distribution in Self-Field Magnetoplasmadynamic Thrusters Journal of Propulsion and Power, Vol. 21, No. 1, (2005), p.119.

DOI: 10.2514/1.5227

Google Scholar

[4] K. Sankaran, E. Y. Choueiri and S. C. Jardin: Comparison of Simulated Magnetoplasmadynamic Thruster Flowfields to Experimental Measurements Journal of Propulsion and Power, Vol. 21, No. 1, (2005), p.129.

DOI: 10.2514/1.5340

Google Scholar

[5] K. Kubota, I. Funaki and Y. Okuno: Numerical Sturdy on Electrode Model for Plasma Simulation of MPD Thruster 32nd International Electric Propulsion Conference, 11-15 September 2011, Germany, IEPC-2011-252, (2011).

DOI: 10.2514/6.2011-3594

Google Scholar

[6] K. Kubota, I. Funaki and Y. Okuno: Numerical Study of Plasma Behavior in a Magnetoplasmadynamic Thruster around Critical Current Journal of Propulsion and power, Vol. 25, No. 2, (2009), p.397.

DOI: 10.2514/1.37198

Google Scholar

[7] A. D. Gallimore, A. J. Kelly and R. G. Jahn: Anode Power Deposition in Magnetoplasmadynamic Thrusters Journal of Propulsion and power, Vol. 9, No. 3, (1993), p.361.

DOI: 10.2514/3.23630

Google Scholar

[8] P. G. Mikellides: Design and Operation of MW-Class MPD Thrusters Part I: Numerical Modeling 27th International Electric Propulsion Conference, 14-19 October 2001, California, IEPC-01-124, (2001).

Google Scholar

[9] K. Kubota, I. Funaki and Y. Okuno: Numerical Investigation of Ionization and Acceleration Processed in a Self-Field MPD Thruster 29th International Electric Propulsion Conference, 1-4 November 2005, Princeton Univ., IEPC-2005-089, (2005).

Google Scholar

[10] H. P. Wagner, H. J. Kaeppeler and M. Auweter-Kurtz: Instabilities in MPD Thruster Flows: Investigation of Drift and Gradient Driven Instabilities Using Multi-Fluid Plasma Models Journal of Physics D: Applied Physics, Vol. 31, pp.529-541, (1998).

DOI: 10.1088/0022-3727/31/5/010

Google Scholar

[11] L. Uribarri and E. Y. Choueiri: Creation of Onset Voltage Hash by Anode Spots in a Magnetoplasmadynamic Thruster Journal of Propulsion and Power, Vol. 25, No. 4, (2009), p.949.

DOI: 10.2514/1.40847

Google Scholar

[12] D. L. Tilley, E. Y. Choueiri, A. J. Kelly and R. G. Jahn: Microinstabilities in a 10-Kilowatt Self-Field Magnetoplasmadynamic Thruster Journal of Propulsion and Power, Vol. 12, No. 2, (1996), p.381.

DOI: 10.2514/3.24040

Google Scholar

[13] V. V. Subramaniam and J. L. Lawless: Onset in Magnetoplasmadynamic Thrusters with Finite-Rate lonization Journal of Propulsion and Power, Vol. 4, No. 6, (1988), p.526.

DOI: 10.2514/3.23096

Google Scholar

[14] E. Choueiri: Scaling of Thrust in Self-Field Magnetoplasmadynamic Thrusters Journal of Propulsion and Power, Vol. 14, No. 5, (1998), p.744.

DOI: 10.2514/2.5337

Google Scholar

[15] H. Sato, K. Kubota and I. Funaki: Modeling and Numerical Simulation of a Two-Dimensional MPD Thruster Using a Hydrogen Propellant 32nd International Electric Propulsion Conference, 11-15 September 2011, Germany, IEPC-2011-258, (2011).

Google Scholar

[16] G. Colasurdo and L. Casalino: Optimal Geometry of Self-Field Magnetoplasmadynamic Thrusters Journal of Propulsion and Power, Vol. 17, No. 2, (2001), p.472.

DOI: 10.2514/2.5767

Google Scholar

[17] H. O. Schrade, M. Auweter-Kurtz and H. L. Kurtz: Cathode Erosion Studies on MPD Thrusters AIAA Journal, Vol. 25, No. 8, (1987), p.1105.

DOI: 10.2514/3.9750

Google Scholar

[18] R. M. Myers, N. Suzuki, A. J. Kelly and R. J. Jahn: Cathode Phenomena in a Low Power Magnetoplasmadynamic Thruster Journal of Propulsion and Power, Vol. 7, No. 5, (1991), p.760.

DOI: 10.2514/3.23389

Google Scholar