Knee-FES-Ergometer for Paretic Knee Swinging Exercise: Tuning of PID Controller Using PSO

Article Preview

Abstract:

This paper describes the parameter optimization of PID controllers of knee-FES-ergometer used to control the paralyzed knee for smooth swinging exercise. The knee-FES-ergometer is a machine that helps elongate knee swinging exercise of paralyzed people by reducing the required electrical stimulus. Particle swarm optimization (PSO) is used to optimize the PID parameters and the performance of swinging exercise are compared with the manually tuned PID parameters. Results shows that the PSO tuned PID have improved the quality of knee swinging exercise if compared with the manually tuned PID but the number of iteration for the PSO to converge is considered high and takes very long time.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

595-601

Citation:

Online since:

July 2014

Keywords:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] W. T. Liberson, H. J. Holmquest, D. Scot, and M. Dow, Functional electrotherapy: stimulation of the peroneal nerve synchronized with the swing phase of the gait of hemiplegic patients, Arch. Phys. Med. Rehabil., vol. 42, p.101–105, Feb. (1961).

Google Scholar

[2] A. Ajoudani and A. Erfanian, Neuro-sliding mode control with modular models for control of knee-joint angle using quadriceps electrical stimulation, Conf. Proc. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. IEEE Eng. Med. Biol. Soc. Conf., vol. 2007, p.2424–2427, (2007).

DOI: 10.1109/iembs.2007.4352817

Google Scholar

[3] Z. Z. Karu, W. K. Durfee, and A. M. Barzilai, Reducing muscle fatigue in FES applications by stimulating with N-let pulse trains, IEEE Trans. Biomed. Eng., vol. 42, no. 8, p.809–817, Aug. (1995).

DOI: 10.1109/10.398642

Google Scholar

[4] A. Thrasher, G. M. Graham, and M. R. Popovic, Reducing muscle fatigue due to functional electrical stimulation using random modulation of stimulation parameters, Artif. Organs, vol. 29, no. 6, p.453–458, Jun. (2005).

DOI: 10.1111/j.1525-1594.2005.29076.x

Google Scholar

[5] Z. Hussain, M. O. Tokhi, S. Gharooni, R. Jailani, and B. S. K. Kader Ibrahim, Inclined Ergometer to Enhance FES-Assisted Indoor Rowing Exercise Performance, Int. J. Simul. Syst. Sci. Technol., vol. 10, no. 6, p.16–25, Nov. (2009).

DOI: 10.1142/9789814291279_0140

Google Scholar

[6] S. Z. Yahaya, R. Boudville, M. N. Taib, and Z. Hussain, Dynamic modeling and control of wheel-chaired elliptical stepping exercise, in 2012 IEEE International Conference on Control System, Computing and Engineering (ICCSCE), 2012, p.204–209.

DOI: 10.1109/iccsce.2012.6487142

Google Scholar

[7] R. Boudville, Z. Hussain, S. Z. Yahaya, and M. H. Mohd Noor, New FES-Assisted Knee Swinging Ergometer for Stroke Patient: A Design and Simulation Study, Electron. Electr. Eng., (2014).

DOI: 10.5755/j01.eee.20.1.6168

Google Scholar

[8] A. Ratnaweera, S. Halgamuge, and H. C. Watson, Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients, IEEE Trans. Evol. Comput., vol. 8, no. 3, p.240–255, (2004).

DOI: 10.1109/tevc.2004.826071

Google Scholar

[9] I. A. Latiff and M. O. Tokhi, Fast convergence strategy for Particle Swarm Optimization using spread factor, " in IEEE Congress on Evolutionary Computation, 2009. CEC , 09, 2009, p.2693–2700.

DOI: 10.1109/cec.2009.4983280

Google Scholar

[10] R. Boudville, Z. Hussain, S. Z. Yahaya, and M. N. Taib, Dynamic modeling and control of FES-assisted knee ergometer for stroke patient, in 2012 IEEE International Conference on Control System, Computing and Engineering (ICCSCE), 2012, p.436–439.

DOI: 10.1109/iccsce.2012.6487185

Google Scholar

[11] Z. Hussain, M. O. Tokhi, and S. Gharooni, Dynamic Simulation of Indoor Rowing Exercise for Paraplegics, in Second Asia International Conference on Modeling Simulation, 2008. AICMS 08, 2008, p.901 –904.

DOI: 10.1109/ams.2008.30

Google Scholar

[12] S. C. Abdulla, O. Sayidmarie, and M. O. Tokhi, Functional electrical stimulation-based cycling assisted by flywheel and electrical clutch mechanism: A feasibility simulation study, Robot. Auton. Syst., vol. 62, no. 2, p.188–199, Feb. (2014).

DOI: 10.1016/j.robot.2013.10.005

Google Scholar

[13] D. A. Winter, Biomechanics and Motor Control of Human Movement. John Wiley & Sons, (2009).

Google Scholar

[14] R. Riener and T. Fuhr, Patient-driven control of FES-supported standing up: a simulation study, IEEE Trans. Rehabil. Eng., vol. 6, no. 2, p.113 –124, Jun. (1998).

DOI: 10.1109/86.681177

Google Scholar

[15] Z. Hussain, R. Boudville, S. Z. Yahaya, and F. Ahmad, Muscle Extension Model for FES-Assisted Knee Swinging Ergometer for Stroke Patient, in 2013 Fifth International Conference on Computational Intelligence, Communication Systems and Networks (CICSyN), 2013, p.120.

DOI: 10.1109/cicsyn.2013.62

Google Scholar

[16] R. Massoud, Intelligent Control Techniques for Spring Assisted FES-Cycling, PhD thesis, The University of Sheffield, United Kingdom, (2007).

Google Scholar