[1]
C. Leng and Q. Cao, Motion planning for omni-directional mobile robots based on anisotropy and artificial potential field method, Ind. Robot An Int. J., vol. 36, no. 5, p.477–488, (2009).
DOI: 10.1108/01439910910980204
Google Scholar
[2]
D. Kim, K. Hwang, D. Lee, and T. Kuc, Mobile Robot Design apply to Design Concept, 2006 SICE-ICASE Int. Jt. Conf., p.2989–2992, (2006).
DOI: 10.1109/sice.2006.314993
Google Scholar
[3]
H. Xu, D. Tan, Z. Zhang, and K. Xue, A Reconfigurable Mobile Robot with 5th wheel, in Proceedings ofthe 2009 IEEE International Conference on Mechatronics and Automation August 9 - 12, Changchun, China, 2009, p.211–216.
DOI: 10.1109/icma.2009.5246259
Google Scholar
[4]
H. Zhang, W. Wang, Z. Deng, G. Zong, and J. Zhang, A Novel Reconfigurable Robot for Urban Search and Rescue, Int. J. Adv. Robot. Syst., vol. 3, no. 4, p.359–366, (2006).
Google Scholar
[5]
N. Enayati and F. Najafi, Design and manufacturing of a tele-operative rescue robot with a novel track arrangement, Ind. Robot An Int. J., vol. 38, no. 5, p.476–485, (2011).
DOI: 10.1108/01439911111154045
Google Scholar
[6]
R. Vidoni and a. Gasparetto, Efficient force distribution and leg posture for a bio-inspired spider robot, Rob. Auton. Syst., vol. 59, no. 2, p.142–150, Feb. (2011).
DOI: 10.1016/j.robot.2010.10.001
Google Scholar
[7]
A. G. Rodriguez, A. G. Rodriguez, and P. Rea, A new articulated leg for mobile robots, Ind. Robot An Int. J., vol. 38, no. 5, p.521–532, (2011).
DOI: 10.1108/01439911111154090
Google Scholar
[8]
H. dachi, and N. Koyachi, Development of a leg-wheel hybrid mobile robot and its step-passing algorithm, 2001 IEEE International Conference on Intelligent Robots and Systems, Expanding the Societal Role of Robotics in the Next Millennium, Vol. 2, pp.728-733, (2001).
DOI: 10.1109/iros.2001.976255
Google Scholar
[9]
Q. Bakhsh, K. Hasnan, A. Ahmed, Comparative study between wheeled and tracked mobility system for mobile robot, Applied Mechanics and Materials, Vol. 363, pp.538-543, (2013).
DOI: 10.4028/www.scientific.net/amm.393.538
Google Scholar
[10]
G. Bayar, A. B. Koku, and E. Konukseven, Design of a Configurable All Terrain Mobile Robot Platform, Int. J. Math. Model. methods Appl. Sci., vol. 3, no. 4, p.366–373, (2009).
Google Scholar
[11]
G. Quaglia, L. Bruzzone, G. Bozzini, R. Oderio, and R. P. Razzoli, Epi. q-TG: mobile robot for surveillance, Ind. Robot An Int. J., vol. 38, no. 3, p.282–291, (2011).
DOI: 10.1108/01439911111122789
Google Scholar
[12]
O.I.S. Michaud, D.L. Etourneau, M. Arsenault, Y. Bergeron, R. Cadrin, F.R. Ed, M. Legault, M. Millette, M. Tremblay, P. Lepage and Y.A.N. Morin, Multi-Modal Locomotion Robotic Platform Using Leg-Track-Wheel Articulations, Autonomous Robots, Vol. 18, pp.137-156, (2005).
DOI: 10.1007/s10514-005-0722-1
Google Scholar
[13]
M. Muniandy and K. Muthusamy, An Innovative Design to Improve Systematic Odometry Error in Non-holonomic Wheeled Mobile Robots, Procedia Eng. Int. Symp. Robot. Intell. Sensors 2012 (IRIS 2012), vol. 41, no. Iris, p.436–442, Jan. (2012).
DOI: 10.1016/j.proeng.2012.07.195
Google Scholar