Texture Evolution of Friction-Stir-Welded 5A30 Aluminum Alloy Plate

Article Preview

Abstract:

In the present study, the texture of friction-stir-weled 5A30 aluminum alloy was investigated by EBSD technology. Cubic texture {100}<100> is obtained in the shoulder-affected region of NZ due to the complete recrystallization. The dominate texture in the pin-affected region of NZ is the {112}<110> B/ simple shear texture induced by the rotation pin.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

136-139

Citation:

Online since:

August 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Bisadi H, Tavakoli A, Sangsaraki M T, Sangsaraki K T. The influences of rotational and welding speeds on microstructures and mechanical properties of friction stir welded Al5083 and commercially pure copper sheets lap joints [J]. Material and Design, 2013, 43: 80-88.

DOI: 10.1016/j.matdes.2012.06.029

Google Scholar

[2] Zhou C Z, Yang X Q, Luan G H. Fatigue properties of friction stir welds in Al 5083 alloy [J]. Scripta Material, 2005, 53: 1187-1191.

DOI: 10.1016/j.scriptamat.2005.07.016

Google Scholar

[3] Zhu Z H, Yuan G C, Li Z H, Wu Q G, Wu X K. The flow stress and material constants of thermal deformation for 5A30 aluminum alloy [J]. Materials Research and Application, 2010, 4: 0577-0581.

Google Scholar

[4] Nandan R, Debroy T, Bhadeshia H K DH. Recent advances in friction-stir welding Process, weldment structure and properties [J]. Progress in Materials Science, 2008, 53: 980-1023.

DOI: 10.1016/j.pmatsci.2008.05.001

Google Scholar

[5] Mishra R S, Ma Z Y. Friction stir welding and processing [J]. Material Sciece and Engineering R, 2005, 50: 1-78.

Google Scholar

[6] Devinder Y, Ranjit B. Effect of friction stir processing on microstructure and mechanical properties of aluminum [J]. Material Science Engineering A, 2012, 539: 85-92.

Google Scholar

[7] Davies R, Randle V. Secondary Processing of Electron Backscatter Data from an Aluminum Alloy [J]. Materials Characterization, 1996, 37: 131-141.

DOI: 10.1016/s1044-5803(96)00095-2

Google Scholar

[8] Adams B L, Wright S I, Kunze K. Orientation Imaging: The Emergence of a New Microscopy [J]. Metallurgical Transactions A, 1992, 24: 819-813.

Google Scholar

[9] Li Z J, Winther G, Hansen N. Anisotropy of plastic deformation in rolled aluminum [J]. Material Science and Engineering A, 2004, 387-389: 199-202.

DOI: 10.1016/j.msea.2004.03.090

Google Scholar

[10] Zhang Y H, Yao Z Y, Huang G J, Liu Q. EBSD investigation on microstructure and texture in rolling aluminum alloys [J]. Journal of Chinese Electron Microscopy Society, 2009, 28: 43-45.

Google Scholar

[11] Field D P, Nelson T W, Hovanski Y, Jata K V. Heterogeneity of Crystallographic Texture in Friction Stir Welds of Aluminum [J]. Metallurgical and Materials Transactions A, 2001, 32: 2869-2877.

DOI: 10.1007/s11661-001-1037-2

Google Scholar

[12] Chen Z W, Pasang T, Qi Y. Shear flow and formation of Nugget zone during friction stir welding of aluminum alloy 5083-O [J]. Material Science and Engineering A, 2008, 474: 312-316.

DOI: 10.1016/j.msea.2007.05.074

Google Scholar

[13] Ahmed M M Z, Wynne B P, Rainforth W M, Threadgill P L. Through-thickness crystallographic texture of stationary shoulder friction stir welded aluminum [J]. Scripta Materialia, 2011, 64: 45-48.

DOI: 10.1016/j.scriptamat.2010.08.060

Google Scholar