[1]
J. Zhang, S. Chowdhury and J.Q. Zhang, et al.: Adaptive hybird surrogate modeling for complex systems. AIAA Journal. Vol. 51-3(2013), pp.643-656.
DOI: 10.2514/1.j052008
Google Scholar
[2]
X.F. Mu, W.X. Yao and X.Q. Yu, et al.: A survey of surrogate models used in MDO. Chinese Journal of Computational Mechanics. Vol. 22-5(2005), pp.608-612.
Google Scholar
[3]
Y.H. Yu , L.G. Chen and F.R. Sun, et al.: Neural-network based analysis and prediction of a compressor's characteristic performance map. Applied Energy. Vol. 84(2007), pp.48-55.
DOI: 10.1016/j.apenergy.2006.04.005
Google Scholar
[4]
J. Zhang, S. Chowdhury and A. Messac: An adaptive hybird surrogate model. Struct Multidisc Optim. Vol. 46 (2012), pp.223-238.
DOI: 10.1007/s00158-012-0764-x
Google Scholar
[5]
A.I.J. Forrester, A.J. Keane: Recent advances in surrogated-based optimization. Progress in Aerospace Sciences. Vol. 45(2009), pp.50-79.
DOI: 10.1016/j.paerosci.2008.11.001
Google Scholar
[6]
Z.Y. Chen,Y. Ren and G.C. Bai, et al.: Particle swarm optimized Kriging approximate model and its application to reliability analysis. Journal of Aerospace Power. Vol. 26-7(2011), pp.1522-1530.
Google Scholar
[7]
M.J. Sun, H. Zhan: Synthesis airfoil optimizaiton by particle swarm optimizaiton based on global information. Acta Aeronautica et Astronautica Sinica. Vol. 31-11(2010), pp.2166-2173.
Google Scholar
[8]
M.J. Sun, H. Zhan: Application of Kriging surrogate model for aerodynamic shape optimization of wing. Acta Aerodynamic Sinica. Vol. 29-6(2011), pp.759-764.
Google Scholar
[9]
D.W. Yin, B.W. Li and Y.H. Wang, et al.: Aeroengine compressor charateristics metamodeling using Kriging method. Acta Aeronautica et Astronautica Sinica. Vol. 32-1(2011), pp.99-106.
Google Scholar
[10]
H.L. You, X.Z. Jia: The construction and optimizaiton of Kriging metamodel based on genetic algorithms. Journal of computer-aided design &computer graphics. Vol. 19-1(2007), pp.64-68.
Google Scholar
[11]
P. Chen,J. Li and T. Guan: The optimizaiton of parameters of Kriging correlation model based on patitical swarm optimizaiton. Microelectronics & computer. Vol. 26-4(2009), pp.178-185.
Google Scholar
[12]
S.N. Lophaven H.B. Nielsen and J. Sondergaard: DACE: a MATLAB kriging toolbox. IMM-TR-2002-12, pp.1-26.
Google Scholar
[13]
J. Sun: Particle swarm optimization with particles having quantum behavior. PhD thesis of Jiang Nan University, Wuxi (2009).
Google Scholar
[14]
J. Sun, B. Feng, W.B. Xu: Particle swarm optimization with particles having quantum behavior. Proc of the IEEE Congress on Evolutionary Computation, Portland(2004), pp.325-331.
DOI: 10.1109/cec.2004.1330875
Google Scholar