[1]
J.W. Youn, Y. Jun. A dedicated CAD/CAM system for 5-axis machining of marine propeller / Proceedings of the ASME Design Engineering Technical Conference. Pittsburgh, PA, United states: American Society of Mechanical Engineers, (2001), pp.645-651.
DOI: 10.1115/detc2001/dac-21077
Google Scholar
[2]
S.P. Yan, S.L. Li. Research on the technology of numerical control machining to propellers. Mechanical and Electrical Equipment, 2 (2005), pp.16-20. (in Chinese).
Google Scholar
[3]
L.X. Cao, J. Liu. An integrated surface modeling and machining approach for a marine propeller. International Journal of Advanced Manufacturing Technology, 35(11) (2008), pp.1053-1064.
DOI: 10.1007/s00170-006-0786-x
Google Scholar
[4]
H.C. Kuo, W.Y. Dzan. The analysis of NC machining efficiency for marine propellers. Journal of Materials Processing Technology, 124(3) (2002), pp.389-395.
DOI: 10.1016/s0924-0136(01)01191-8
Google Scholar
[5]
J.H. Yoon. Tool tip gouging avoidance and optimal tool positioning for 5-axis sculptured surface machining. International Journal of Production Research, 41(10) (2003), pp.2125-2142.
DOI: 10.1080/0020754031000087319
Google Scholar
[6]
J.W. Youn. Interference-free tool path generation in five-axis machining of a marine propeller. INT.J. PROD. RES., 41(18) (2003), pp.4383-4402.
DOI: 10.1080/0020754031000153342
Google Scholar
[7]
X.M. Zou. Research of 5-axis machining technology for large-scale marine propeller. Wuhan: Huazhong University of Science and Technology (2007). (in Chinese).
Google Scholar
[8]
The pioneering introduction of robot in propeller production by Yuan Hang. Guangdong shipbuilding, 8 (2010), p.19. (in Chinese).
Google Scholar
[9]
Z. Huang, Y. Huang. The design and application of heavy-duty CNC abrasive belt grinding machine with high precision controllable pitch propeller. Journal of Chongqing University, 34(9) (2011), pp.17-20. (in Chinese).
DOI: 10.4028/www.scientific.net/amr.135.404
Google Scholar
[10]
H. Chen, Z.X. Wang. Computer aided manufacturing of marine propellers by parallel kinematics machine/ Proceedings of the ASME Manufacturing Engineering Division 2003. Washington, DC., United states: American Society of Mechanical Engineers, (2003).
DOI: 10.1115/imece2003-41727
Google Scholar
[11]
R. Wang. Research on the key technology of 6-TPS parallel platform CNC milling machine. Harbin: Harbin Institute of Technology, (2007). (in Chinese).
Google Scholar
[12]
R. Wang. G. Ding, S.S. Zhong. Kinematics analysis of a new 5 DOF parallel-serial machine tool based on the vector method. Key Engineering Materials, 4 (2010), pp.283-287.
DOI: 10.4028/www.scientific.net/kem.450.283
Google Scholar
[13]
M.S. Tsai, W.H. Yuan. Dynamic modeling and analysis of 3PRS parallel mechanism using constrained robotic approach/ ASME 2010 10th Biennial Conference on Engineering Systems Design and Analysis, ESDA2010. Istanbul, Turkey: American Society of Mechanical Engineers, (2010).
DOI: 10.1115/esda2010-24200
Google Scholar
[14]
S. Parasuraman, P. Chan. Development of RPS parallel manipulators/ 2nd International Conference on Computer and Network Technology, ICCNT 2010. Bangkok, Thailand: IEEE Computer Society, (2010), pp.600-605.
DOI: 10.1109/iccnt.2010.123
Google Scholar
[15]
H.C. Jung, J.D. Hwang, K.B. Park. Development of practical postprocessor for 5-axis machine tool with non-orthogonal rotary axes. Journal of Central South University of Technology, 18(1) (2011), pp.159-164.
DOI: 10.1007/s11771-011-0674-x
Google Scholar
[16]
M.A. Nasseri, M. Eder, D. Eberts. Kinematics and dynamics analysis of a hybrid parallel-serial micromanipulator designed for biomedical applications/ 2013 IEEE/ASME International Conference on Advanced Intelligent Mechatronics: Mechatronics for Human Wellbeing, AIM 2013. Wollongong, NSW, Australia: IEEE Computer Society, (2013).
DOI: 10.1109/aim.2013.6584107
Google Scholar
[17]
J.D. Hwang, H.C. Jung, K.B. Park. A study on the development of a practical postprocessor for 5-axis machining/ ASME 2010 10th Biennial Conference on Engineering Systems Design and Analysis, ESDA2010. Istanbul, Turkey: American Society of Mechanical Engineers, (2010).
DOI: 10.1115/esda2010-25190
Google Scholar
[18]
X.D. Liang, X.F. Li, Y. Tang. The inverse kinematics analysis of 3-RPS DOF parallel mechanism. Applied Mechanics and Materials, 278-280 (2013), pp.654-659.
DOI: 10.4028/www.scientific.net/amm.278-280.654
Google Scholar
[19]
H.B. Choi, A. Konno, M. Uchiyama. Closed-form forward kinematics solutions of a 4-DOF parallel robot. International Journal of Control, Automation and Systems, 7(5) (2009), pp.858-864.
DOI: 10.1007/s12555-009-0520-1
Google Scholar
[20]
Z.L. Wang, J.J. HE, H. Shang. Forward kinematics analysis of a six-DOF stewart platform using PCA and NM algorithm. Industrial Robot, 36(5) (2009), pp.448-460.
DOI: 10.1108/01439910910980178
Google Scholar
[21]
M. Dehghani, M. Eghtesad, A.A. Safavi. Neural network solutions for forward kinematics problem of HEXA parallel robot/ Proceedings of the American Control Conference. Seattle, WA, United states: Institute of Electrical and Electronics Engineers Inc., (2008).
DOI: 10.1109/acc.2008.4587155
Google Scholar
[22]
A. Ghasem, Z. Soheil, I. Misagh. Forward kinematics analysis of a 3-PRS parallel manipulator. World Academy of Science, Engineering and Technology, 61 (2010), pp.329-335.
Google Scholar