A Saliency Detection Method Based on Wavelet Transform and Simple Priors

Article Preview

Abstract:

In this paper, we present a new visual saliency model, which based on Wavelet Transform and simple Priors. Firstly, we create multi-scale feature maps to represent different features from edge to texture in wavelet transform. Then we modulate local saliency at a location and its global saliency, combine the local saliency and global saliency to generate a new saliency .Finally, the final saliency is generated by combining the new saliency and two simple priors (color prior an location prior). Experimental evaluation shows the proposed model can achieve state-of-the-art results and better than the other models on a public available benchmark dataset.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

2238-2241

Citation:

Online since:

August 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] L. Itti, C. Koch, E. Niebur: IEEE Trans. Pattern Anal. Mach. Intell. 20 (11) (1998) 1254-1259.

DOI: 10.1109/34.730558

Google Scholar

[2] Ma Y, Zhang H: ACM Int. Conf. Multimedia. (2003) 228-241.

Google Scholar

[3] Jinjian Wu, Fei Qi, Guangming Shi: Non-local spatial redundancy reduction for bottom-up saliency estimation (2012).

Google Scholar

[4] Harel J, Koch C, Perona P. Graph-based visual saliency. In: Proc in Advances in neural information processing systems, Vancouver, BC: MIT Press, 2007, 545-552.

Google Scholar

[5] Achanta R, Hemami S, Estrada F, et al. Frequency-tuned salient region detection. In: Proc of IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL: IEEE Press, 2009, 1597-1604.

DOI: 10.1109/cvpr.2009.5206596

Google Scholar

[6] X. Hou and L. Zhang, Saliency detection: A spectral residual approach, in IEEE Conf. Computer Vision and Pattern Recognition, 2007, pp.1101-1104.

DOI: 10.1109/cvpr.2007.383267

Google Scholar

[7] C. Guo, Q. Ma, and L. Zhang, Spatio-temporal saliency detection using phase spectrum of quaternion fourier transform, in IEEE Conf. Computer Vision and Pattern Recognition, (2008).

DOI: 10.1109/cvpr.2008.4587715

Google Scholar

[8] Yuming Fang, Chen, Z. ; Weisi Lin ; Lin, C.W. Saliency Detection in the Compressed Domain for Adaptive Image Retargeting. (2012).

Google Scholar

[9] Schauerte, B, Stiefelhagen, R. Predicting human gaze using quaternion dct image signature saliency and face detection. (2012).

DOI: 10.1109/wacv.2012.6163035

Google Scholar

[10] Q. Tian, N. Sebe, M. S. Lew, et al: J. Electron. Imag., vol. 10 (2001) 4, pp.835-849.

Google Scholar

[11] Nevrez İ mamoğ lu, Weisi Lin. A: IEEE Ttrans . 96-105, (2013).

Google Scholar

[12] S. Frintrop, VOCUS: A visual attention system for object detectionand goal directed search, Ph.D. dissertation, Rheinische Friedrich-Wilhelms-Universitat Bonn, Bonn, Germany, (2005).

DOI: 10.1007/11682110_4

Google Scholar

[13] R. Achanta, S. Hemami, F. Estrada, and S. Susstrunk, Frequency-tuned salient region detection, in Proc. IEEE Int. Conf. Comput. Vision and Pattern Recognition , 2009, p.1597–1604.

DOI: 10.1109/cvpr.2009.5206596

Google Scholar

[14] T. Judd, K. Ehinger, F. Durand, and A. Torralba, Learning to predict where humans look, " ICCV, 09, pp.2106-2113, (2009).

DOI: 10.1109/iccv.2009.5459462

Google Scholar

[15] [X. Chen and Y. Wu, A unified approach to salient object detection via low rank matrix recovery, " CVPR, 12, pp.853-860, (2012).

DOI: 10.1109/cvpr.2012.6247758

Google Scholar