Noise in a Plasma Wave-Based THz Device

Article Preview

Abstract:

Using a two-dimensional ensemble Monte Carlo (EMC) method, the noise spectrum of a InGaAs-based nanoFET is studied in detail. Simulation results show that the noise spectrum consists of two maxima at frequencies of about 0.7 THz and 2 THz. The lower-frequency maximum is sensitive to the source-drain voltage, while that of the higher frequency one is not. These achievements are coincident with experimental results. Moreover, based on Dyakonv-Shur’s theory, the emergence of noise maxima is explained as the excitation of 2D plasma waves in the device.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

2732-2735

Citation:

Online since:

August 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. M. See, O. Klochan, A. R. Hamilton, A. P. Micolich, M. Aagesen and P. E. Lindelof: Appl. Phys. Lett. Vol. 96 (2010), p.112104.

DOI: 10.1063/1.3358388

Google Scholar

[2] A. M. Song, A. Lorke, A. Kriele, J. P. Kotthaus, W. Wegscheider and M. Bichler: Phys. Rev. Lett. Vol. 80 (1998), p.3831.

DOI: 10.1103/physrevlett.80.3831

Google Scholar

[3] H. Irie and R. Sobolewski: Appl. Phys. Lett. Vol. 107 (2010), p.084315.

Google Scholar

[4] J. -F. Millithaler, L. Reggiani, J. Pousset, L. Varani, C. Palermo, W. Knap, J. Mateos, T. González, S. Perez and D. Pardo: J. Stat. Mech.: Theory and Experiment. Vol. 2009 (2009), pp. P01040.

DOI: 10.1088/1742-5468/2009/01/p01040

Google Scholar

[5] M. Dyakonov and M. Shur: Phys. Rev. Lett. Vol. 71 (1993), p.2465.

Google Scholar

[6] A. El. Fatimy, N. Dyakonova, Y. Meziani, T. Otsuji, W. Knap, S. Vandenbrouk, K. Madjour, D. Theron, C. Gaquiere, M. A. Poisson, S. Delage, P. Prystawko and C. Skierbiszewski: J. Appl. Phys. Vol. 107 (2010), p.024504.

DOI: 10.1063/1.3291101

Google Scholar

[7] V. Yu. Kachorovskii and M. S. Shur: Appl. Phys. Lett. Vol. 100 (2012), p.232108.

Google Scholar

[8] T. Nagatsuma: IEICE Elec. Expr. Vol. 8 (2011), p.1127.

Google Scholar

[9] Y. Chen, J. He, H. L. Liang, Y. Ma, Q. Chen, Y. Su, H. Y. He, M. Chan, J. Cao: J. Comp. and Theor. Nano. Vol. 9 (2012), p.549.

Google Scholar

[10] L. Wang, W. Hu, J. Wang, X. Wang, S. Wang, X. Chen and W. Lu: Appl. Phys. Lett. Vol. 100 (2012), p.123501.

Google Scholar

[11] Y. Zhou, J. Sun, Y. Sun, Z. Zhang, W. Lin, H. Liu, C. Zeng, M. Lu, Y. Cai, D. Wu, S. Lou, H. Qin, B. Zhang: J. Semiconductors (2011), p.064005.

DOI: 10.1088/1674-4926/32/6/064005

Google Scholar

[12] C. Jacoboni and P. Lugli: The Monte Carlo Method for Semiconductor Device Simulation (Springer, New York 1989).

DOI: 10.1007/978-3-7091-6963-6_5

Google Scholar

[13] C. Jungemann and B. Meinerzhagen: Hierarchical Device Simulation: The Monte-Carlo Perspective (Springer, New York 2003).

Google Scholar

[14] J. Mateos, A. M. Song, B. G. Vasallo1, D. Pardo1, T. González1: Proc. SPIE Vol. 5838 (2005), p.145.

Google Scholar

[15] J. Mateos, B. G. Vasallo, D. Pardo, and T. González: Appl. Phys. Lett. Vol. 86 (2005), p.212103.

Google Scholar

[16] I. Iñiguez–de-la-Torre, J. Mateos, D. Pardo, and T. González: J. Appl. Phys. Vol. 103 (2008), 024502.

Google Scholar

[17] I. Iñiguez–de-la-Torre, J. Mateos, D. Pardo, A. M. Song and T. González: Appl. Phys. Lett. Vol. 94 (2009), p.093512.

DOI: 10.1063/1.3095845

Google Scholar

[18] K. Y. Xu, X. F. Lu, G. Wang, and A. M. Song: J. Appl. Phys. Vol. 103 (2008), p.113708.

Google Scholar

[19] K. Y. Xu, X. F. Lu, A. M. Song, and G. Wang: Appl. Phys. Lett. Vol. 92 (2008), p.163503.

Google Scholar

[20] K. Y. Xu, X. F. Lu, G. Wang and A. M. Song: IEEE Trans. Nanotechnol. Vol. 7 (2008), p.451.

Google Scholar

[21] P. Shiktorov, E. Starikov, V. Gružinskis, L. Reggiani, L. Varani and J. C. Vaissière: Appl. Phys. Lett. Vol 80 (2002), p.4759.

DOI: 10.1063/1.1488694

Google Scholar

[22] M. Shur: Electon. Lett. Vol. 46 (2010), pp. S18.

Google Scholar