[1]
B. Mandelhrot. Some noises with 1/f spectrum, a bridge between direct current and white noise. Information Theory, IEEE Transactions on, Vol. 13(2)( 1967),P. 289.
DOI: 10.1109/tit.1967.1053992
Google Scholar
[2]
A. Oustaloup. La d'erivation non enti`ere: th'eorie, synth`ese et applications. Hermes, Paris, (1995).
Google Scholar
[3]
F. Amblard, A.C. Maggs, B. Yurke, A.N. Pargellis, and S. Leibler. Subdiffusion and anomalous local viscoelasticity in actin networks. Phys. Rev. Lett., Vol. 77(21)(1996),P. 4470.
DOI: 10.1103/physrevlett.77.4470
Google Scholar
[4]
R. Klages, G. Radons, I.M. Sokolov. Anomalous transport: foundations and applications. Wiley-VCH, Weinheim, (2008).
Google Scholar
[5]
K. Diethelm, The analysis of fractional differential equations, Springer, Berlin, (2010).
Google Scholar
[6]
K. Diethelm, N. J. Ford, A. D. Freed, Detailed error analysis for a fractional Adams method, Numer. Algorithms. Vol. 36(1)(2004),P. 31.
DOI: 10.1023/b:numa.0000027736.85078.be
Google Scholar
[7]
Y. Lin, C. Xu, Finite difference/spectral approximations for the time fractional diffusion equation, J. Comput. Phys. Vol. 225(2) (2007),P. 1533.
DOI: 10.1016/j.jcp.2007.02.001
Google Scholar
[8]
J. Y. Cao, C. J. Xu, A high order schema for the numerical solution of the fractional ordinary differential equations, J. Comput. Phys., Vol. 238(2013),P. 154.
DOI: 10.1016/j.jcp.2012.12.013
Google Scholar
[9]
J. Y. Cao, C. J. Xu, A high order schema for the numerical solution of ordinary fractional differential equations, Contemporary Mathematics, Vol. 586(2013),P. 93.
DOI: 10.1090/conm/586/11658
Google Scholar
[10]
K. Diethelm, N.J. Ford, Analysis of fractional differential equations, J. Math. Anal. Appl. Vol. 265 (2) (2002),P. 229.
Google Scholar
[11]
J. Dixon, S. McKee, Weakly singular discrete Gronwall inequalities, Z. Angew. Math. Mech. Vol. 66 (11) (1986),P. 535.
DOI: 10.1002/zamm.19860661107
Google Scholar