Phase Analyse of Non-Vortical and Vortical Beams in Fractional Fourier Transform System

Article Preview

Abstract:

The phase of vortical beams is very different from that of non-vortical beams. The phase of non-vortical and vortical beams in fractional Fourier transform system is investigated by selecting different parameters of the anomalous vortical beam. It is found that although the intensity distribution is similar except nearby the Fourier transform plane for the non-vortical and the vortical beams, the phase distribution is very different even the beam parameters are the same except the topological charge. The different phases bring different intensity distributions especially at the Fourier transform plane, i.e the center of non-vortical beams is a very strong intensity peaks, however the center of vortical beams is a dark region.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

3648-3651

Citation:

Online since:

August 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Karimi E., Marrucci L., Lisio C., and Santamato E., Time-division multiplexing of the orbital angular momentum of light, Opt. Lett., 2012, 37(2): 127-129.

DOI: 10.1364/ol.37.000127

Google Scholar

[2] Karimi E., Piccirillo B., Marrucci L., and Santamato E., Improved focusing with Hypergeometric-Gaussian type-II optical modes, Opt. Express, 2008, 16(25): 21069-21075.

DOI: 10.1364/oe.16.021069

Google Scholar

[3] He H., Heckenberg N. R., and Rubinsztein-Dunlop H., Optical particle trapping with higher-order doughnut beams produced using high efficiency computer generated holograms, J. Mod. Opt., 1995, 42(1): 217-223.

DOI: 10.1080/09500349514550171

Google Scholar

[4] Salo J., Fagerholm J., Friberg A. T., and Salomaa M. M., Nondiffracting Bulk-Acoustic X waves in Crystals, Phys. Rev. Lett., 1999, 83(6): 1171-1174.

DOI: 10.1103/physrevlett.83.1171

Google Scholar

[5] Durnin J., Miceli J. J. Jr., and Eberly J. H., Diffraction-free beams, Phys. Rev. Lett., 1987, 58(15): 1499-1501.

DOI: 10.1103/physrevlett.58.1499

Google Scholar

[6] Durnin J., Exact solutions for nondiffracting beams. I. The scalar theory, J. Opt. Soc. Am. A, 1987, 4(4): 651-654.

DOI: 10.1364/josaa.4.000651

Google Scholar

[7] Yang Z., Miao W., Yang Z., and Zhang S., Numerical Simulations of Fractional Fourier Transform of Hypergeometric-Gaussian Beam, Adv. Mater. Res., 2013, 765-767: 780-784.

DOI: 10.4028/www.scientific.net/amr.765-767.780

Google Scholar

[8] Han D., Liu C., and Lai X., The fractional Fourier transform of Airy beams using Lohmann and quadratic optical systems, Opt. Laser Technol., 2012, 44(5): 1463-1467.

DOI: 10.1016/j.optlastec.2011.12.017

Google Scholar

[9] Zheng C., Fractional Fourier transform for a hollow Gaussian beam, Phys. Lett. A, 2006, 355(26): 156-161.

DOI: 10.1016/j.physleta.2006.02.025

Google Scholar

[10] Lu X., Wei C., Liu L., Wu G., Wang F., and Cai Y., Experimental study of the fractional Fourier transform for a hollow Gaussian beam, Opt. Laser Technol., 2014, 56: 92-98.

DOI: 10.1016/j.optlastec.2013.07.023

Google Scholar

[11] Yang Y., Dong Y., Zhao C., and Cai Y., Generation and propagation of an anomalous vortex beam, Opt. Lett., 2013, 38(24): 5418-5421.

DOI: 10.1364/ol.38.005418

Google Scholar