Research on the BOVW Model of Infrared Video Based on the Motion History

Article Preview

Abstract:

Aiming at the feature representation problem of infrared video, this paper presents an approach for bag of visual words model by considering the spatial and the temporal relations among the visual features. In this approach, motion mask image was generated based on motion history image, optical flow vector is mapping to visual code book. By using motion history value and motion energy value calculating the weighting coefficient, the BOVW was constructed based on angle voting. Experiments have demonstrated improved performances on motion feature representation in the infrared video.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

3652-3660

Citation:

Online since:

August 2014

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. Willamowski, D. Arregui, G. Csurka, C. R. Dance, and L. Fan. Categorization nine visual classes using local appearance descriptors. In IWLAVS, (2004).

Google Scholar

[2] D. Nister and H. Stewenius. Scalable recognition with a vocabulary tree. In CVPR06, pages 2161–2168, (2006).

Google Scholar

[3] Rong Zhao, William I. Grosky. Narrowing the Semantic Gate-Improved Text Based Web Document Retrieval Using Visual Features[J]. IEEE Transactions on multimedia. 2002, 4(2): 189 – 200.

DOI: 10.1109/tmm.2002.1017733

Google Scholar

[4] C. D. Manning, P. Raghavan, H. Schutze. Introduction to information retrieval [J]. Cambridge University Press. (2008).

Google Scholar

[5] P. Doll´ar, V. Rabaud, G. Cottrell, and S. Belongie. Behavior recognition via sparse spatio-temporal features. In VSPETS, October (2005).

DOI: 10.1109/vspets.2005.1570899

Google Scholar

[6] C. Schuldt, I. Laptev, and B. Caputo. Recognizing human actions: a local svm approach. In ICPR04, pages III: 32–36, (2004).

DOI: 10.1109/icpr.2004.1334462

Google Scholar

[7] S. Savarese, J. Winn, and A. Criminisi. Discriminative object class models of appearance and shape by correlatons. In CVPR06, pages 2033–2040, (2006).

DOI: 10.1109/cvpr.2006.102

Google Scholar

[8] M. Marszaek and C. Schmid. Spatial weighting for bag-offeatures. In CVPR06, pages 2118–2125, (2006).

Google Scholar

[9] K. Grauman and T. Darrell. The pyramid match kernel: Discriminative classification with sets of image features. InICCV05, pages 1458–1465, (2005).

DOI: 10.1109/iccv.2005.239

Google Scholar

[10] S. Lazebnik, C. Schmid, and J. Ponce. Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories. In CVPR06, pages 2169–2178, (2006).

DOI: 10.1109/cvpr.2006.68

Google Scholar

[11] Sebastiani, F. Machine learning in automated text categorization [J]. Acm Computing Surveys, Mar, 2002, 34 (1): 1-47.

DOI: 10.1145/505282.505283

Google Scholar

[12] X. Wang, K. Tieu, and E. Grimson. Learning semantic scene models by trajectory analysis. In Proc. ECCV, (2006).

Google Scholar

[13] H. Zhong, J. Shi, and M. Visontai. Detecting unusual activity in video. In Proc. CVPR, (2004).

Google Scholar

[14] P. Smith, N. V. Lobo, and M. Shah. Temporalboost for event recognition. In Proc. ICCV, (2005).

Google Scholar

[15] Ahad M A R, Tan J K, Kim H, et al. Motion history image: its variants and applications[J]. Machine Vision and Applications, 2012, 23(2): 255-281.

DOI: 10.1007/s00138-010-0298-4

Google Scholar

[16] Yin Z, Collins R. Moving object localization in thermal imagery by forward-backward MHI[C]/Computer Vision and Pattern Recognition Workshop, 2006. CVPRW'06. Conference on. IEEE, 2006: 133-133.

DOI: 10.1109/cvprw.2006.131

Google Scholar

[17] Barron, Beauchemin, Fleet.On Optical Flow[J]. AIICSR, 1994. 9.

Google Scholar

[18] ] Li, J., Allinson, N. M. A comprehensive review of current local features for computer vision [J]. Neurocomputing, Jun, 2008, 71 (10-12): 1771-1787.

DOI: 10.1016/j.neucom.2007.11.032

Google Scholar