[1]
Lee, C., Hellinga, B. & Saccomanno, F. (2003), Real-time-crash prediction model for application to crash prevention in freeway traffic, Transportation Research Record, 1840, 67-77.
DOI: 10.3141/1840-08
Google Scholar
[2]
Abdel-Aty, M., Uddin, U. & Pande, A. (2005), Split models for predicting multivehicle crashes during high-speed and low-speed operating conditions on freeways, Transportation Research Record, 1908, 51-58.
DOI: 10.1177/0361198105190800107
Google Scholar
[3]
Oh, C., Oh, J. & Ritchie, S. (2005), Real-time hazardous traffic condition warning system: framework and evaluation, IEEE Transactions on Intelligent Transportation Systems, 6(3), 265-272.
DOI: 10.1109/tits.2005.853693
Google Scholar
[4]
Zheng, Z.D., Ahn, S. & Monsere, C.M. (2010), Impact of traffic oscillations on freeway crash occurrences, Accident Analysis & Prevention, 42(2), 626-636.
DOI: 10.1016/j.aap.2009.10.009
Google Scholar
[5]
Li, Z., Wang, W., Chen, R., Liu, P. & Xu, C. (2013a), Evaluation of the impacts of speed variation on freeway traffic collisions in various traffic states, Traffic Injury Prevention, 14(8), 861-866.
DOI: 10.1080/15389588.2013.775433
Google Scholar
[6]
Li, Z., Chung, K. & Cassidy, M.J. (2013b), Collisions in Freeway Traffic: Influence of Downstream Queues and Interim Means to Address Them. Transportation Research Record, 2396, 1-9.
DOI: 10.3141/2396-01
Google Scholar
[7]
Li, Z., Ahn, S., Chung, K., Ragland, D.R., Wang, W. & Yu, J.W. (2013c). Surrogate safety measure for evaluating rear-end collision risk related to kinematic waves near freeway recurrent bottlenecks. Accident Analysis & Prevention, 64, 52–61.
DOI: 10.1016/j.aap.2013.11.003
Google Scholar
[8]
Papageorgiou, M. & Kotsialos, A. (2002), Freeway ramp metering: An overview, IEEE Transactions on Intelligent Transportation Systems, 3(4), 271-281.
DOI: 10.1109/tits.2002.806803
Google Scholar
[9]
Carlson, R.C., Papamichail, I., Papageorgiou, M. & Messmer, A. (2010), Optimal mainstream traffic flow control of large-scale motorway networks, Transportation Research Part C: Emerging Technologies, 18(2), 193-212.
DOI: 10.1016/j.trc.2009.05.014
Google Scholar
[10]
Li, Z., Wang, W., Liu, P., Bigham, J. & Ragland, D.R. (2013d). Using Geographically Weighted Poisson Regression for county-level crash modeling in California. Safety Science, 58, 89–97.
DOI: 10.1016/j.ssci.2013.04.005
Google Scholar
[11]
Zhang, G. & Wang, Y. (2013), Optimizing coordinated ramp metering: A preemptive hierarchical control approach, Computer-Aided Civil and Infrastructure Engineering, 28(1), 22-37.
DOI: 10.1111/j.1467-8667.2012.00764.x
Google Scholar
[12]
Lee, C., Hellinga, B. & Saccomanno, F. (2006), Evaluation of variable speed limits to improve traffic safety, Transportation Research Part C: Emerging Technologies, 14(3), 213-228.
DOI: 10.1016/j.trc.2006.06.002
Google Scholar
[13]
Abdel-Aty, M., Dilmore, J. & Dhindsa, A. (2006), Evaluation of variable speed limits for real-time freeway safety improvement, Accident Analysis & Prevention, 38(2), 335-345.
DOI: 10.1016/j.aap.2005.10.010
Google Scholar
[14]
Allaby, P., Hellinga, B. & Bullock, M. (2007), Variable speed limits: Safety and operational impacts of a candidate control strategy for freeway applications, IEEE Transactions on Intelligent Transportation Systems, 8(4), 671-680.
DOI: 10.1109/tits.2007.908562
Google Scholar
[15]
Hellinga, B. & Mandelzys, M. (2011), Impact of driver compliance on the safety and operational impacts of freeway variable speed limit systems, Journal of Transportation Engineering-ASCE, 137(4), 208-268.
DOI: 10.1061/(asce)te.1943-5436.0000214
Google Scholar
[16]
Daganzo, C.F. (1994), The cell transmission model - A dynamic representation of highway traffic consistent with the hydrodynamic theory, Transportation Research Part B: Methodological, 28(4), 269-287.
DOI: 10.1016/0191-2615(94)90002-7
Google Scholar