Photo Catalytic Reduction of Pb(II) Using Titanium Oxide PVA-Alginate Beads under Sunlight

Article Preview

Abstract:

Pb(II) which is considered a toxic and common pollutant to the environment was removed from the aqueous solution using the one step photo catalytic reduction with the help of titanium oxide PVA-alginate beads. The photo catalytic reduction was performed in the presence and absence of sunlight at pH 7 and Pb(II) concentration of 50mg/L at the equilibrium contact time of 180 min. The results revealed that the titanium oxide PVA-alginate beads were capable of removing 98% of Pb(II) from the aqueous solution within 150 min. The titanium oxide PVA-alginate beads can be separated from the aqueous solution after photocatalytic process and they can be reused for at least 7 times without significant loss in their initial properties.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

99-103

Citation:

Online since:

August 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] X. Guo, G.T. Fei, H. Su,L.D. Zhang, High-performance and reproducible polyaniline nanowire/tubes for removal of Cr(VI) in aqueous solution, J. Phys. Chem. C. 115(2011) 1608–1613.

DOI: 10.1021/jp1091653

Google Scholar

[2] M. Sprynskyy, B. Buszewski, A.P. Terzyk,J. Namiesnik, Study of the selection mechanism of heavy metal (Pb2+, Cu2+, Ni2+, and Cd2+) adsorption on clinoptilolite, J. Colloids Interface Sci. 304 (2006) 21-28.

DOI: 10.1016/j.jcis.2006.07.068

Google Scholar

[3] A. Sar, M. Tuzen, D. Cıtak, M. Soylak, Adsorption characteristics of Cu(II) and Pb(II) onto expanded perlite from aqueous solution, J. Hazard. Mater. 148 (2007) 387–394.

DOI: 10.1016/j.jhazmat.2007.02.052

Google Scholar

[4] K.O. Adebowale, I.E. Unuabonah, B.I. Olu-Owolabi, The effect of some operating variables on the adsorption of lead and cadmium ions on kaolinite clay, J. Hazard. Mater. 134(2006)130–139.

DOI: 10.1016/j.jhazmat.2005.10.056

Google Scholar

[5] S. Deng, R. Bai, Removal of trivalent and hexavalent chromium with aminated polyacrylonitrile fibers: performance and mechanisms, Water Res. 38(2004) 2424-2432.

DOI: 10.1016/j.watres.2004.02.024

Google Scholar

[6] M. Pelaez, A.A.D.L. Cruz, E. Stathatos, P. Falaras, D.D. Dionysiou, Visible light-activated N-F-codoped TiO2 nanoparticles for the photocatalytic degradation of microcystin-LR in water, Catalysis Today, 144(2009) 19-25.

DOI: 10.1016/j.cattod.2008.12.022

Google Scholar

[7] X. Wang, S.O. Pehkonen, A.K. Ray, Removal of aqueous Cr(VI) by a combination of photocatalytic reduction and coprecipitation, Ind. Eng. Chem. Res. 43 (2004) 1665–1672.

DOI: 10.1021/ie030580j

Google Scholar

[8] S.C. Xu, Y.X. Zhang, S.S. Pan, H.L. Ding and G.H. Li, Recyclable magnetic photocatalysts of Fe2+/TiO2 hierarchical architecture with effective removal of Cr(VI) under UV light from water, J. Hazard. Mater. 196(2011) 29-35.

DOI: 10.1016/j.jhazmat.2011.08.068

Google Scholar

[9] F. Chen, R. Shi, Y. Xue, L. Chen, Q.H. Wan, Templated synthesis of monodisperse mesoporous maghemite/silica microspheres for magneticseparation of genomic DNA, J. Magn. Magn. Mater. 322(2010) 2439-2445.

DOI: 10.1016/j.jmmm.2010.02.053

Google Scholar

[10] R. Thapa,S. Maiti, T.H. Rana andU.N. Maiti, Anatase TiO2 nanoparticles synthesis via simple hydrothermal route: Degradation of Orange II, Methyl Orange and Rhodamine B, J. Mol. Catal. A. 363 (2012) 223-229.

DOI: 10.1016/j.molcata.2012.06.013

Google Scholar

[11] A. Idris, E. Misran and N.M. Yusof, Photocatalytic reduction of Cr(VI) by PVA-alginate encapsulated γ-Fe2O3 magnetic beads using different types of illumination lamp and light,J. Ind. Eng. Chem. 18 (2012) 2151–2156.

DOI: 10.1016/j.jiec.2012.06.011

Google Scholar

[12] M. Iqbal, A. Saeed and S.I. Zafar, FTIR Spectrophotometry, Kinetics and dsorption Isotherms Modeling, Ion Exchange, and EDX Analysis for Understanding the Mechanism of Cd+2 and Pb+2 Removal by Mango Peel Waste, J. Hazard. Mater. 164 (2009).

DOI: 10.1016/j.jhazmat.2008.07.141

Google Scholar

[13] A.K. Yewale, F.C. Raghuwanshi, N.G. Belsare, R.V. Waghmare, R.V. Joar, T.S. Wasnik, K.B. Raulkar, A.S. Wadatkar, G.T. Lamdhade, Gas Sensivity of TiO2 Based Thick Film Sensor to NH3 Gas at Room Temperature, Int. J. Adv. Eng. Technol. 2 (2011).

Google Scholar

[14] A. Idris N.S.M. Ismail,N. Hassan, E. Misran, A.F. Ngomsik, Synthesis of magnetic alginate beads based on maghemite nanoparticles for Pb(II) removal in aqueous solution, J. Ind. Eng. Chem. 18 (2012) 1582–1589.

DOI: 10.1016/j.jiec.2012.02.018

Google Scholar

[15] F. Sala, F. Trifirò, Oxidation catalysts based on tin-antimony oxides,J. Catal. 34 (1974) 68–78.

Google Scholar

[16] K. Kabra, R. Chaudhary, R.L. Sawhney, Solar photocatalytic removal of Cu(II), Ni(II), Zn(II) and Pb(II): Speciation modeling of metal–citric acid complexes,J. Hazard. Mater. 155(2008) 424–432.

DOI: 10.1016/j.jhazmat.2007.11.083

Google Scholar