[1]
M.F.B. Abdollah, Y. Yamaguchi, T. Akao, N. Inayoshi, M. Miyamoto, T. Tokoroyama, N. Umehara, Future developments of a deformation-wear transition map of DLC coating, Tribology Online, 3 (2012) 107-111.
DOI: 10.2474/trol.7.107
Google Scholar
[2]
M.F.B. Abdollah, Y. Yamaguchi, T. Akao, N. Inayoshi, M. Miyamoto, T. Tokoroyama, N. Umehara, Deformation-wear transition map of DLC coating under cyclic impact loading, Wear, 274-275 (2012) 435-441.
DOI: 10.1016/j.wear.2011.11.007
Google Scholar
[3]
M.F.B. Abdollah, Y. Yamaguchi, T. Akao, N. Inayoshi, M. Miyamoto, T. Tokoroyama, N. Umehara, The effect of maximum normal impact load, absorbed energy, and contact impulse, on the impact crater volume/depth of DLC coating, Tribology Online, 6 (2011).
DOI: 10.2474/trol.6.257
Google Scholar
[4]
M.F.B. Abdollah, Y. Yamaguchi, T. Akao, N. Inayoshi, M. Miyamoto, N. Umehara, T. Tokoroyama, Phase transformation studies on the a-C coating under repetitive impact, Surface and Coatings Technology, 205 (2010) 625-631.
DOI: 10.1016/j.surfcoat.2010.07.062
Google Scholar
[5]
M.I.H.C. Abdullah, M.F. Abdollah, H. Amiruddin, N. Tamaldin, N.R.M. Nuri, Optimization of tribological performance of HbN/Al2O3 nanoparticles as engine oil additives, Procedia Engineering, 68 (2013) 313-319.
DOI: 10.1016/j.proeng.2013.12.185
Google Scholar
[6]
M.I.H.C. Abdullah, M.F. Abdollah, H. Amiruddin, N. Tamaldin, N.R.M. Nuri, Effect of hBN/Al2O3 nanoparticles additives on tribological performance of engine oil, Jurnal Teknologi (Sciences and Engineering), 66 (2014) 1-6.
DOI: 10.11113/jt.v66.2685
Google Scholar
[7]
M.F.B. Abdollah, M.A.A. Mazlan, H. Amiruddin, N. Tamaldin, Friction behaviour of bearing material under gas lubricated conditions, Procedia Engineering, 68 (2013) 688-693.
DOI: 10.1016/j.proeng.2013.12.240
Google Scholar
[8]
M.F.B. Abdollah, M.A.A. Mazlan, H. Amiruddin, N. Tamaldin, Experimental study on friction and wear behaviors of bearing material under gas lubricated conditions, Jurnal Teknologi (Sciences and Engineering), 66 (2014) 43-49.
DOI: 10.11113/jt.v66.2693
Google Scholar
[9]
J.M. Martin, N. Ohmae, Nanolubricants, Wiley, England, (2008).
Google Scholar
[10]
M. Zhang, X. Wang, W. Liu, X. Fu, Performance and anti-wear mechanism of Cu nanoparticles as lubricating oil additives, Industrial Lubrication and Tribology, 61 (2009) 311-318.
DOI: 10.1108/00368790910988426
Google Scholar
[11]
W. Li, S. Zheng, B. Cao, Friction and wear properties of ZrO2/SiO2 composite nanoparticles, Journal of Nanoparticle Research, 13 (2011) 2129-2137.
DOI: 10.1007/s11051-010-9970-x
Google Scholar
[12]
Y.Y. Wu, W.C. Tsui, T.C. Liu, Experimental analysis of tribological properties of lubricating oils with nanoparticles additives, Wear 262 (2007) 819-825.
DOI: 10.1016/j.wear.2006.08.021
Google Scholar
[13]
L. Rapoport, V. Leshchinsky, M. Lvovsky, O. Nepomnyashchy, Y. Volovik, R. Tenne, Mechanism of friction of fullerenes, Industrial Lubrication and Tribology, 54 (2002) 171-176.
DOI: 10.1108/00368790210431727
Google Scholar
[14]
Y. Hwang, C. Lee, Y. Choi, S. Cheong, D. Kim, K. Lee, J. Lee, S. Hyung Kim, Effect of the size and morphology of particles dispersed in nano-oil on friction performance between rotating discs, Journal of Mechanical Science and Technology, 25 (2011).
DOI: 10.1007/s12206-011-0724-1
Google Scholar
[15]
S. Qiu, Z. Zhou, J. Dong, G. Chen, Preparation of Ni nanoparticles and evaluation of their tribological performance as potential additives in oils, Journal of Tribology, 123 (1999) 441-443.
DOI: 10.1115/1.1286152
Google Scholar
[16]
X. Tao, Z. Jiazheng, X. Kang, The ball-bearing effect of diamond nanoparticles as an oil additive, J. Phys. D: Appl. Phys. 29 (1996) 2932.
DOI: 10.1088/0022-3727/29/11/029
Google Scholar