[1]
Zhang J.W., Jiang L., Zhu L.Y. Morphology and Properties of Soy Protein and Polylacitde Blends [J]. Biomacromolecules, 2006, 7: 1551~1561.
Google Scholar
[2]
Ogata N., Jimenez G., Kawai H. Structure and Thermal/Mechanical Properties of poly(l-lacitde)-clay blend [J]. J. Polym. Sci.: Part B, 1997, 35(2): 389~396.
DOI: 10.1002/(sici)1099-0488(19970130)35:2<389::aid-polb14>3.0.co;2-e
Google Scholar
[3]
Pluta M., Galeski, A., Alexendre M. Polylactide/Montmorillonite Nanocomposites and Microcomposites Prepared by Melt Blending: Structure and Some Physical Properties [J]. J. App. Polym. Sci., 2002, 86: 1497~1506.
DOI: 10.1002/app.11309
Google Scholar
[4]
Chen G.X., Kim H.S., Shim J.H., et al. Role of Epoxy Groups on Clay Surface in the Improvement of Morphology of Poly(L-lactide)/Clay Composites [J]. Macromolecules, 2005, 38: 3738~3744.
DOI: 10.1021/ma0488515
Google Scholar
[5]
Paul M.A., Alexandre N., Degee P. Exfoliated polylactide/clay nanocomposites by in-situ coordination-insertion polymerization [J]. Macromol. Rapid Commun., 2003, 24: 561~566.
DOI: 10.1002/marc.200390082
Google Scholar
[6]
Chen G.X., Kim H.S., Park B.H. et al. Controlled functionalization of multiwalled carbon nanotubes with various molecular-weight poly(L-lactic acid) [J]. J. Phys. Chem, B, 2005, 109: 22237~22243.
DOI: 10.1021/jp054768n
Google Scholar
[7]
Zhang D.H., Kandadai M. A., Cech J. et al. Poly(L-lactide) (PLLA)/multiwalled carbon nanotube (MWCNT) composite: Characterization and biocompatibility evaluation [J]. J. Phys. Chem. B, 2006, 110: 12910~12915.
DOI: 10.1021/jp061628k
Google Scholar
[8]
McCullen S.D., Stano K.L., Stevens D.R., et al. Development, optimization, and characterization of elctrospun poly(lactic acid) nanofibers containing multi-walled carbon nanotubes [J]. J. Appl. Polym. Sci., 2007, 105(3): 1668~1678.
DOI: 10.1002/app.26288
Google Scholar
[9]
Deng X.M., Hao J.Y., Wang C.S. Preparation and Mechanical Properties of Nanocomposites of Poly (D, L-lactide) with Ca-defidient Hydroxyapatite Nanocrystals [J]. Biomaterial, 2001, 22 (21): 2867~2873.
DOI: 10.1016/s0142-9612(01)00031-x
Google Scholar
[10]
Junqiu Cheng, Ke Duan, Jie Weng, Xingdong Zhang. Study on the Preparation of Porous Nano-hydroxyapatite Polylactic Acid and Its Interface [J]. Chemical Research and Application, 2001, 5 (13): 517~520.
Google Scholar
[11]
Hong Z.H., Qiu X.Y., Sun J.R., et al. Grafting Polymerization of L-lactide on the Surface of Hydroxyapatite Nano-crystals [J]. Polymer, 2004, 45: 6699~6706.
DOI: 10.1016/j.polymer.2004.07.036
Google Scholar
[12]
Hong Z.H., Zhang P.B., He C.L., et al. Nano-composite of Poly (L-lactide) and Surface Grafted Hydroxyapatite: Mechanical Properties and Biocompatibility [J]. Biomaterials, 2005, 26: 6296~6304.
DOI: 10.1016/j.biomaterials.2005.04.018
Google Scholar
[13]
Kasuga T., Ota Y., Nogami M., et al. Preparation and Mechanical Properties of Polylactic Acid Composites Containing Hydroxyapatite Fibers [J]. Biomateirals, 2001, 22: 19~23.
DOI: 10.1016/s0142-9612(00)00091-0
Google Scholar
[14]
Perry Carole C., Eglin David Saad A.M., et al. A statistical Approach to the Effect of Sol-gel Process Variables on the Physical Properties of Polymer (PLLA)-silica Hybrid Materials for Use as Biomaterials [J]. Mater. Res. Soc. Symp. Proc., 2002, 726: 67~78.
DOI: 10.1557/proc-726-q5.1
Google Scholar
[15]
Joubert M., Delaite C., Bourgeat-Lami E., et al. Ring-opening Polymerization of ε-caprolactone and L-lactide from Silica Nanoparticles Surface [J]. Polym. Sci, Part A: Polym. Chem, 2004, 42: 1976~(1984).
DOI: 10.1002/pola.20035
Google Scholar
[16]
Wu L.B., Cao D., Huang Y., et al. Poly(L-lactic acid)/SiO2 Nanocomposites Via in Situ Melt Polycondensation of L-lactic Acid in the Presence of Acidic Silica Sol: Preparation and Characterization [J]. Polymer, 2008, 49(3): 742~748.
DOI: 10.1016/j.polymer.2007.12.019
Google Scholar
[17]
Yan S.F., Yin J.B., Yang Y., et al. Surface-grafted Silica Linked with l-lactic Acid Oligomer: A Novel Nanofiller to Improve the Performance of Biodegradable poly(l-lactide) [J]. Polymer, 2007, 48: 1688~1694.
DOI: 10.1016/j.polymer.2007.01.037
Google Scholar
[18]
Boccaccini A.R., Gerhardt L. C., Rebeling S., et al. Fabrication, Characterization and Assessment of Bioactivity of poly(D, L lactic acid)/TiO2 Nanocomposite Films [J]. Compos.: Part A, 2008, 28: 7211-727.
DOI: 10.1016/j.compositesa.2004.11.002
Google Scholar
[19]
Nakayama N., Hayashi T. Preparation and Characterization of poly(L-lactic acid)/TiO2 Nanoparticle Nanocomposite Films with High Transparency and Efficient Photodegradability [J]. Polym. Deg. Stab., 2007, 92: 1255~1264.
DOI: 10.1016/j.polymdegradstab.2007.03.026
Google Scholar
[20]
Torres F.G., Nazhat S.N., Boccaccini A.R. Mechanical Properties and Bioactivity of Porous PLGA/TiO2 Nanoparticle-filled Composites for Tissure Engineering Scaffolds [J]. Compos. Sci. Tech., 2007, 67: 1139-1147.
DOI: 10.1016/j.compscitech.2006.05.018
Google Scholar
[21]
Song M., Pan C., Li J.Y., et al. Electrochemical Study on Synergistic Effect of the Blending of nano TiO2 and PLA Polymer on the Interaction of Antitumor Drug with DNA [J]. Electroanal. 2006, 18: 1995-(2000).
DOI: 10.1002/elan.200603613
Google Scholar
[22]
Luo Y.B., Wang X.L. Wang Y.Z. Preparation and Properties of Nanocomposites Based on poly (Lactic Acid) and Functionalized TiO2. Acta Materialia 2009, 57: 3182~3191.
DOI: 10.1016/j.actamat.2009.03.022
Google Scholar
[23]
Meili Guo. The Dynamic Mechanical Thermal Analysis of Polymer and Composite Materials [M]. Beijing: Chemical Industry Press, 2002: 34, 52~59.
Google Scholar