[1]
A.I. Iliev, M.S. Scordilis, Spoken emotion recognition using glottal symmetry, Eurasip Journal on Advances in Signal Processing, 24 (2010) 445-460.
DOI: 10.1155/2011/624575
Google Scholar
[2]
M. You, C. Chen, J. Bu, J. Liu, J. Tao, Emotion recognition from noisy speech, Multimedia and Expo, 2006 IEEE International Conference on, (2006) 1653-1656.
DOI: 10.1109/icme.2006.262865
Google Scholar
[3]
H. Fastl, E. Zwicer, Psychoacoustics: Facts and Models, 2nd ed., Springer-Verlag, New York, (1999).
Google Scholar
[4]
R.C. Ronald, M. Yves, W. Victor, Wavelet analysis and signal processing, In Wavelets and their Applications, (1992) 153-178.
Google Scholar
[5]
S. Mallat, A Wavelet Tour of Signal Processing, 3rd ed., Academic Press, Burlington, (2009).
Google Scholar
[6]
Z.H. Zeng, J.L. Tu, B.M. Pianfetti, T.S. Huang, Audio-visual affective expression recognition through multistream fused HMM, IEEE Transactions on Multimedia, 10 (2008) 570-577.
DOI: 10.1109/tmm.2008.921737
Google Scholar
[7]
K.K. Paliwal, Spectral subband centroid features for speech recognition, in Acoustics, Speech and Signal Processing, 1998. Proceedings of the 1998 IEEE International Conference on, 2 (1998) 617-620.
DOI: 10.1109/icassp.1998.675340
Google Scholar
[8]
A. Karmakar, A. Kumar, R.K. Patney, Design of optimal wavelet packet trees based on auditory perception criterion, Signal Processing Letters, IEEE, 14 (2007) 240-243.
DOI: 10.1109/lsp.2006.884129
Google Scholar
[9]
E. Parzen, Autoregressive spectral estimation, in: D.R. Brillinger, P.R. Krishnaiah (Eds. ), Handbook of Statistics, Elsevier, 1983, vol. 3, pp.221-247.
Google Scholar
[10]
F. Burkhardt, A. Paeschke, M. Rolfes, et al., A database of German emotional speech, in Interspeech, (2005) 1517-1520.
DOI: 10.21437/interspeech.2005-446
Google Scholar