[1]
Strogatz S. Exploring complex networks. Nature 410, 268–276 (2001).
Google Scholar
[2]
Li X, Chen G. Synchronization and desynchronization of complex dynamical networks: an engineering viewpoint. IEEE Trans. Circuits Syst. I, Fundam. Theory Appl. 50, 1381–1390 (2003).
DOI: 10.1109/tcsi.2003.818611
Google Scholar
[3]
Zhou J, Xiang L, Liu Z. Synchronization in complex delayed dynamical networks with impulsive effects. Physica A 384, 684–692 (2007).
DOI: 10.1016/j.physa.2007.05.060
Google Scholar
[4]
Wu X. Synchronization-based topology identification of weighted general complex dynamical networks with time varying coupling delay. Physica A 387, 997–1008 (2008).
DOI: 10.1016/j.physa.2007.10.030
Google Scholar
[5]
Zhang Q, Lu J, Lü J, Tse C. Adaptive feedback synchronization of a general complex dynamical network with delayed nodes. IEEE Trans. Circuits Syst. II, Express Briefs 55, 183–187 (2008).
DOI: 10.1109/tcsii.2007.911813
Google Scholar
[6]
Sun Y, Cao J. Adaptive lag synchronization of unknown chaotic delayed neural networks with noise perturbation. Phys. Lett. A 364, 277–285 (2007).
DOI: 10.1016/j.physleta.2006.12.019
Google Scholar
[7]
Li X, Cao J. Adaptive synchronization for delayed neural networks with stochastic perturbation. J. Franklin Inst. 354, 779–791 (2008).
DOI: 10.1016/j.jfranklin.2008.04.012
Google Scholar
[8]
Lu J, Ho W, Cao J, Kurths J. Exponential synchronization of linearly coupled neural networks with impulsive disturbances. IEEE Trans. Neural Netw. 22, 29–336 (2011).
DOI: 10.1109/tnn.2010.2101081
Google Scholar
[9]
Huang C, Cao J. On pth moment exponential stability of stochastic Cohen–Grossberg neural networks with timevarying delays. Neurocomputing 73(4–6), 986–990 (2010).
DOI: 10.1016/j.neucom.2009.08.019
Google Scholar
[10]
Wang Z, Liu Y, Yu L, Liu X. Exponential stability of delayed recurrent neural networks with Markovian jumping parameters. Phys. Lett. A356, 346–352 (2006).
DOI: 10.1016/j.physleta.2006.03.078
Google Scholar
[11]
Liu Z, Lü S, Zhong S, Ye M. pth moment exponential synchronization analysis for a class of stochastic neural networks with mixed delays. Commun. Nonlinear Sci. Numer. Simul. 15(7), 1899–1909 (2010).
DOI: 10.1016/j.cnsns.2009.07.018
Google Scholar
[12]
Lu W, Chen T, Chen G. Synchronization analysis of linearly coupled systems described by differential equations with a coupling delay, Physica D 221, 118-134 (2006).
DOI: 10.1016/j.physd.2006.07.020
Google Scholar