[1]
Candès E. Compressive sampling [A]. Proceedings of the International Congress of Mathematicians [C]. Madrid, Spain: European Mathematical Society Publishing House, 2006, 3: 1433-1452.
DOI: 10.4171/022-3/69
Google Scholar
[2]
Candès E, Romberg J, Tao T, Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information [J]. IEEE Trans on Information Theory, 2006, 52(2): 489-509.
DOI: 10.1109/tit.2005.862083
Google Scholar
[3]
Candès E, Romberg J. Quantitative robust uncertainty principles and optimally sparse decompositions [J]. Foundations of Computing Math, 2006, 6(2): 227-254.
DOI: 10.1007/s10208-004-0162-x
Google Scholar
[4]
D L Donoho, Y Tsaig. Extensions of compressed sensing [J]. Signal Processing. 2006, 86(3): 533-548.
DOI: 10.1016/j.sigpro.2005.05.029
Google Scholar
[5]
Candès E. The restricted isometry property and its implications for compressed sensing [J]. Computes Rendus Mathematique, 2008, 346(9-10): 598-592.
DOI: 10.1016/j.crma.2008.03.014
Google Scholar
[6]
Fang Hong, Zhang Quanbing, Wei Sui. A method of image reconstruction based on sub-gaussian random projection [J]. Journal of Computer Research and Development, 2008, 45(8): 1402-1407.
Google Scholar
[7]
Fang Hong, Zhang Quanbing, Wei Sui. Method of image reconstruction based on very sparse random projection [J]. Computer Engineering and Applications, 2007, 43(22): 25-27.
Google Scholar
[8]
Candès E T, Tao T. Near optimal signal recovery from random projections: universal encoding strategies [J]. IEEE Transactions Information Theory, 2006, 52(12): 5402-5425.
DOI: 10.1109/tit.2006.885507
Google Scholar
[9]
Sebert F, Zou Yiming. Toeplitz block matrices in compressed sensing and their applications in imaging [C]/Proceedings of International Conference on Technology and Applications in Biomedicine. Washington D C: IEEE Press, 2008: 47-50.
DOI: 10.1109/itab.2008.4570587
Google Scholar
[10]
Do T T, Trany T D, Gan L. Fast compressive sampling with structurally random matrices [C]/Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing. Washington D C: IEEE Press, 2008: 3369-3372.
DOI: 10.1109/icassp.2008.4518373
Google Scholar
[11]
Devore R A. Deterministic constructions of compressed sensing matrices [J]. Journal of Complexity, 2007, 23(4-6): 918-925.
DOI: 10.1016/j.jco.2007.04.002
Google Scholar
[12]
Figueiredo M, Nowak R, Wright S. Gradient projection for sparse reconstruction: Application to compressed sensing and other inverse problems [J]. Journal of Selected Topics in Signal Processing: Special Issue on Convex Optimization Methods for Signal Processing, 2007, 1(4): 586-598.
DOI: 10.1109/jstsp.2007.910281
Google Scholar
[13]
Tropp J, Gilbert A. Signal recovery from random measurements via orthogonal matching pursuit [J]. IEEE Trans. Info. Theory, 2007, 53(12): 4655-4666.
DOI: 10.1109/tit.2007.909108
Google Scholar
[14]
Donoho D L, Tsaig Y, Drori I, et al. Sparse solution of underdetermined systems of linear equations by stagewise orthogonal matching pursuit [J]. Information Theory, IEEE Transactions on, 2012, 58(2): 1094-1121.
DOI: 10.1109/tit.2011.2173241
Google Scholar
[15]
Gilbert A C, Strauss M J, Tropp J A, et al. One sketch for all: fast algorithms for compressed sensing[C]/Proceedings of the thirty-ninth annual ACM symposium on Theory of computing. ACM, 2007: 237-246.
DOI: 10.1145/1250790.1250824
Google Scholar
[16]
Fyhn K, Arildsen T, Larsen T, et al. Demodulating subsampled direct sequence spread spectrum signals using compressive signal processing [C]/Signal Processing Conference (EUSIPCO), 2012 Proceedings of the 20th European. IEEE, 2012: 2556-2560.
Google Scholar