Numerical Simulation of the Impact on Wide Composite Sandwich Beam

Article Preview

Abstract:

This paper is focused on the development of a finite element model describing the behaviour of sandwich structure with composite skins and low density foam core in case of low-velocity transverse impact load. The material properties of foam core and composite skins were determined using tensile tests. The non-linear elastic behaviour of composite skins was implemented into the commercial finite elements software using material subroutine. The identification process combining finite element simulations and mathematical optimization method was used for the determination of material parameters of the composite skins. The foam core was modelled using Abaqus Low-density Foam material model considering the non-linear behaviour in case of tension.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

162-169

Citation:

Online since:

August 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Meo M., Morris A.J., Vignjevic R., Marengo G.; Numerical simulations of low-velocity impact on an aircraft sandwich panel, Composite Structures, 2003, vol. 62, pp.353-360.

DOI: 10.1016/j.compstruct.2003.09.035

Google Scholar

[2] Mamalis A. G., Spentzas K.N., Papapostolou D. P., Pantelelis N.; Finite element investigation of the influence of material properties on crushing characteristics of in-plane loaded composite, Thin-Walled Structures, 2013, vol. 63, pp.163-174.

DOI: 10.1016/j.tws.2012.09.011

Google Scholar

[3] Wang J., Waas A.M., Wang H.; Experimental and numerical study on the low-velocity impact behaviour of foam-core sandwich panels, Composite Structures, 2013, vol. 96, pp.298-311.

DOI: 10.1016/j.compstruct.2012.09.002

Google Scholar

[4] Kollár P.L., Springer G.S.; Mechanics of composite structures, Cambridge University Press, 2003, ISBN-10 0-511-06336-9.

Google Scholar

[5] Mostafa A., Shankar K., Morozov E.V.; Effect of shear keys diameter on the shear performentce of composite sandwich panel with PVC and PU foam core: FE study, Composite Structures, 2013, vol. 102, pp.90-100.

DOI: 10.1016/j.compstruct.2013.03.003

Google Scholar

[6] Zhou J., Guan Z.W., Cantwell W.J.; The impact response of graded foam sandwich structures, Composite Structures, 2013, vol. 97, pp.370-377.

DOI: 10.1016/j.compstruct.2012.10.037

Google Scholar

[7] Kroupa T., Krystek J., Srbová H., Janda P.; Plastic behaviour in shear and degradation of shear modulus of textile composite materials with simple plane wave, Experimental Stress Analysis 2011, Brno University of Technology, Brno, 2011, ISBN 978-80-214-4275-7.

Google Scholar

[8] Menna C., Zinno A., Asprone D., Prota A.; Numerical assessment of the impact behaviour of honeycomb sandwich structures, Composite Structures, 2013, vol. 106, pp.326-339.

DOI: 10.1016/j.compstruct.2013.06.010

Google Scholar

[9] Schweizerhof K.; Crashworthiness analysis with enhanced composite material models in LS-Dyna - merits and limits. LS-Dyna world comference, Detroit, Michigan, USA, (1998).

Google Scholar

[10] Matzenmiller A., Lubliner J., Taylor R.L.; A constitutive model for anisotropic damage in fiber-composites, Mechanics of Materials, 1995, vol. 20, pp.125-152.

DOI: 10.1016/0167-6636(94)00053-0

Google Scholar

[11] Rizov V. I.; Non-linear indentation behaviour of foam core sandwich composite materials / A 2D approach, Computational Materials Science, 2006, vol. 35, pp.107-115.

DOI: 10.1016/j.commatsci.2005.02.009

Google Scholar

[12] Ivañez I., Santiuste C., Sanchez-Saez S.; FEM analysis of dynamic flexural behaviour of composite sandwich beams with foam core, Composte Structures, 2010, vol. 92, pp.2285-2291.

DOI: 10.1016/j.compstruct.2009.07.018

Google Scholar

[13] Kroupa T., Zemčík R., Klepáček J.; Temperature dependence of parameters of non-linear stress-strain relationship for carbon epoxy composites, Materiali and Technologije, 2009, vol. 43, no. 2, pp.69-72.

Google Scholar

[14] Kleisner V., Zemčík R., Kroupa T.; Identification and validation of composite material parameters for Ladeveze damage model. Materials and technology, 2011, vol. 45, no. 6, pp.567-570.

Google Scholar

[15] Kroupa, T., Laš, V., Zemčík, R.; Improved nonlinear stress-strain relation for carbon-epoxy composites and identification of material parameters. Journal of Composite Materials, 2011, vol. 45, no. 9, pp.1045-1057.

DOI: 10.1177/0021998310380285

Google Scholar

[16] OptiSLang Documentation, Version 3. 2. 0, Dynamic Software and Engineering GmbH, February (2011).

Google Scholar

[17] Zemčík R., Laš V., Kroupa T., Purš H.; Identification of material characteristics of sandwich panels, Bulletin of Applied Mechanics, 2011, vol. 26, pp.26-30.

Google Scholar

[18] Mandys T., Kroupa T., Laš V.; Determination of value of shear modulus for linear stress-strain relationship in case of impact on composite plate, Proceedings of the 50th Annual Conference on Experimental Stress Analysis, 2012, pp.257-262.

Google Scholar

[19] Abaqus 6. 11 Documentation, Dassault Systèmes Simulia Corp., (2011).

Google Scholar