[1]
RobotChallenge. International championship for self-made, autonomous, and mobile robots. Available online. cited 06-112013. http: /www. robotchallenge. org.
Google Scholar
[2]
RobotChallenge. Name of Event: Puck Collect. RobotChallenge - Puck Collect Rules. Available online. cited 06-11-2013. http: /www. robotchallenge. org/fileadmin/user_upload/ _temp_/RobotChallenge/Reglement/RC-PuckCollect. pdf.
Google Scholar
[3]
Devantech Ltd. (2012), SRF05 - Ultra-Sonic Ranger. Technical Specification. Devantech Ltd (Robot Electronics). Norfolk England. available online. cited 06-30-2013. http: /www. robot-electronics. co. uk/htm/srf05tech. htm.
Google Scholar
[4]
SHARP Electronics Corporation. Distance Measuring Sensors. SHARP Microelectronics. Available online. Cited 06-30-2013. http: /www. sharpsme. com/optoelectronics/sensors/distance-measuring-sensors.
Google Scholar
[5]
Li-Hong Juang, Ming-Ni Wu, Zhi-Zhong Weng, Object identification using mobile devices, Measurement, Volume 51, May 2014, Pages 100-111, (2014).
DOI: 10.1016/j.measurement.2014.01.029
Google Scholar
[6]
M. Dekan, F. Duchoň, L. Jurišica, A. Vitko, A. Babinec, iRobot Create Used in Education, Journal of Mechanics Engineering and Automation. - ISSN 2159-5275. - ISSN 2159-5283. - Vol. 3, Iss. 4, 2013, pages 197-202, (2013).
DOI: 10.17265/2159-5275/2013.04.002
Google Scholar
[7]
Zhen Liu, Fengjiao Li, Guangjun Zhang, An external parameter calibration method for multiple cameras based on laser rangefinder, Measurement, Volume 47, January 2014, Pages 954-962 (2014).
DOI: 10.1016/j.measurement.2013.10.029
Google Scholar
[8]
P. De Cristoforis, S. Pedre, M. Nitsche, T. Fischer, F. Pessacg, C. Di Pietro, A Behavior-based approach for educational robotics activities, IEEE Transactions on Education, Volume 56, Issue 1, 2013, Article number 6341861, Pages 61-66, (2013).
DOI: 10.1109/te.2012.2220359
Google Scholar
[9]
H. Gonzalez-Jorge, B. Riveiro, E. Vazquez-Fernandez, J. Martínez-Sánchez, P. Arias, Metrological evaluation of Microsoft Kinect and Asus Xtion sensors, Measurement, Volume 46, Issue 6, July 2013, Pages 1800-1806, (2013).
DOI: 10.1016/j.measurement.2013.01.011
Google Scholar
[10]
F. Nagata, N. Kitahara, A. Otsuka, K. Sakakibara, K. Watanabe, M.K. Habib, A proposal of experimental education system of mechatronics, Artificial Life and Robotics, Volume 17, Issue 3-4, 2013, Pages 378-382, (2013).
DOI: 10.1007/s10015-012-0069-6
Google Scholar
[11]
P. Benavidez, C. Gleinser, A. Jaimes, J. Labrado, C. Riojas, M. Jamshidi, L.B. Endowed, Design of semi-autonomous robots for competitive robotics, World Automation Congress Proceedings, World Automation Congress, WAC 2012; Puerto Vallarta; Mexico; 24 June 2012 through 28 June 2012; Code 94214, (2012).
DOI: 10.1109/wac.2016.7582999
Google Scholar
[12]
J. Hung Guo et al., Motion Planning of Multiple Pattern Formation for Mobile Robots, Applied Mechanics and Materials, Volumes 284 - 287, January, 2013, pages 1877-1882, (2013).
DOI: 10.4028/www.scientific.net/amm.284-287.1877
Google Scholar
[13]
Min Huang et al., Global Path Planning for Mobile Robot Based on Improved Ant Colony Algorithms, Applied Mechanics and Materials, Volume 418, September, 2013, pages 15-19, (2013).
DOI: 10.4028/www.scientific.net/amm.418.15
Google Scholar
[14]
Shu Guang Niu et al., New Structural Design of Coal Mine Rescue Robot, Applied Mechanics and Materials, Volume 470, December, 2013, pages 650-653, (2013).
DOI: 10.4028/www.scientific.net/amm.470.650
Google Scholar
[15]
Yang Xue et al., A New Approach for Autonomous Robot Obstacle Avoidance Using PSD Infrared Sensor Combined with Digital Compass, Applied Mechanics and Materials, Volume 511-512, February, 2014, pages 101-104, (2014).
DOI: 10.4028/www.scientific.net/amm.511-512.101
Google Scholar
[16]
Martin Vondráček et al., Multi-Robot System for Mapping of the Unknown Environment, Applied Mechanics and Materials, Volume 511-512, pages 827-833, (2014).
DOI: 10.4028/www.scientific.net/amm.511-512.827
Google Scholar
[17]
Ping Peng et al., Dynamic Analysis of the Wheel-Legged Mobile Robot, Applied Mechanics and Materials, Volume 344, pages 174-181, (2013).
DOI: 10.4028/www.scientific.net/amm.344.174
Google Scholar
[18]
Hong Ji Zhang et al., Parameter Self-Adjusting Path Tracking Algorithm of Mobile Robots, Applied Mechanics and Materials, Volume 418, pages 10-14, (2013).
DOI: 10.4028/www.scientific.net/amm.418.10
Google Scholar
[19]
Xiao Dong Tan et al., A Algorithm of Path Planning Based on Multiple Mobile Robots, Applied Mechanics and Materials, Volume 470, pages 621-624, (2013).
DOI: 10.4028/www.scientific.net/amm.470.621
Google Scholar
[20]
Hao Wang et al., A Mobile Robot Obstacle Avoidance Method Based on Improved Potential Field Method, Applied Mechanics and Materials, Volume 467, pages 496-501, (2013).
DOI: 10.4028/www.scientific.net/amm.467.496
Google Scholar
[21]
J. Ivanka, Ultrasonic sensors in commercial safety industry and in mechatronics systems. In: Sborník přednášek , mezinárodní konference MMAMS´2009, Modelovanie mechanických a mechatronických sústav, Zemplínská Šírava, Slovenská republika, 22. -24. 9. 2009, 2009, s. 297 - 301, ISSN 0543-5846.
Google Scholar
[22]
J. Ivanka, P. Navrátil, Educational laboratory robotic system. In: Security magazín. Roč. XVII, vyd. 63, 2/2010, vyd. Familymedia, Praha, 2010, s. 34-37, ISSN 1210 - 8723.
Google Scholar
[23]
L. Hargaš, M. Hrianka, D. Koniar and P. Izák, P. Quality Assessment SMT Technology by Virtual Instrumentation, Applied Electronics 2007, Pilsen, 5. – 6. 9. 2007, ISBN 987-80-7043-537-3, (2007).
Google Scholar