Puck Collecting Robot

Article Preview

Abstract:

The paper deals with design of robot for puck collecting. Puck collecting is a competition category at RobotChallenge. The aim of this competition is to find and collect pucks with defined color (blue or red) and place them to home position with the same color. The robot has a two-wheeled undercarriage with differentially driven wheels. The robot works as an autonomous system and it has two microcontrollers for parallel controlling of processes. The robot is able to find and recognize the puck and place it to home position defined with the same color. The designed robot Tukebot attended the competition RobotChallenge 2012.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

256-264

Citation:

Online since:

August 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] RobotChallenge. International championship for self-made, autonomous, and mobile robots. Available online. cited 06-112013. http: /www. robotchallenge. org.

Google Scholar

[2] RobotChallenge. Name of Event: Puck Collect. RobotChallenge - Puck Collect Rules. Available online. cited 06-11-2013. http: /www. robotchallenge. org/fileadmin/user_upload/ _temp_/RobotChallenge/Reglement/RC-PuckCollect. pdf.

Google Scholar

[3] Devantech Ltd. (2012), SRF05 - Ultra-Sonic Ranger. Technical Specification. Devantech Ltd (Robot Electronics). Norfolk England. available online. cited 06-30-2013. http: /www. robot-electronics. co. uk/htm/srf05tech. htm.

Google Scholar

[4] SHARP Electronics Corporation. Distance Measuring Sensors. SHARP Microelectronics. Available online. Cited 06-30-2013. http: /www. sharpsme. com/optoelectronics/sensors/distance-measuring-sensors.

Google Scholar

[5] Li-Hong Juang, Ming-Ni Wu, Zhi-Zhong Weng, Object identification using mobile devices, Measurement, Volume 51, May 2014, Pages 100-111, (2014).

DOI: 10.1016/j.measurement.2014.01.029

Google Scholar

[6] M. Dekan, F. Duchoň, L. Jurišica, A. Vitko, A. Babinec, iRobot Create Used in Education, Journal of Mechanics Engineering and Automation. - ISSN 2159-5275. - ISSN 2159-5283. - Vol. 3, Iss. 4, 2013, pages 197-202, (2013).

DOI: 10.17265/2159-5275/2013.04.002

Google Scholar

[7] Zhen Liu, Fengjiao Li, Guangjun Zhang, An external parameter calibration method for multiple cameras based on laser rangefinder, Measurement, Volume 47, January 2014, Pages 954-962 (2014).

DOI: 10.1016/j.measurement.2013.10.029

Google Scholar

[8] P. De Cristoforis, S. Pedre, M. Nitsche, T. Fischer, F. Pessacg, C. Di Pietro, A Behavior-based approach for educational robotics activities, IEEE Transactions on Education, Volume 56, Issue 1, 2013, Article number 6341861, Pages 61-66, (2013).

DOI: 10.1109/te.2012.2220359

Google Scholar

[9] H. Gonzalez-Jorge, B. Riveiro, E. Vazquez-Fernandez, J. Martínez-Sánchez, P. Arias, Metrological evaluation of Microsoft Kinect and Asus Xtion sensors, Measurement, Volume 46, Issue 6, July 2013, Pages 1800-1806, (2013).

DOI: 10.1016/j.measurement.2013.01.011

Google Scholar

[10] F. Nagata, N. Kitahara, A. Otsuka, K. Sakakibara, K. Watanabe, M.K. Habib, A proposal of experimental education system of mechatronics, Artificial Life and Robotics, Volume 17, Issue 3-4, 2013, Pages 378-382, (2013).

DOI: 10.1007/s10015-012-0069-6

Google Scholar

[11] P. Benavidez, C. Gleinser, A. Jaimes, J. Labrado, C. Riojas, M. Jamshidi, L.B. Endowed, Design of semi-autonomous robots for competitive robotics, World Automation Congress Proceedings, World Automation Congress, WAC 2012; Puerto Vallarta; Mexico; 24 June 2012 through 28 June 2012; Code 94214, (2012).

DOI: 10.1109/wac.2016.7582999

Google Scholar

[12] J. Hung Guo et al., Motion Planning of Multiple Pattern Formation for Mobile Robots, Applied Mechanics and Materials, Volumes 284 - 287, January, 2013, pages 1877-1882, (2013).

DOI: 10.4028/www.scientific.net/amm.284-287.1877

Google Scholar

[13] Min Huang et al., Global Path Planning for Mobile Robot Based on Improved Ant Colony Algorithms, Applied Mechanics and Materials, Volume 418, September, 2013, pages 15-19, (2013).

DOI: 10.4028/www.scientific.net/amm.418.15

Google Scholar

[14] Shu Guang Niu et al., New Structural Design of Coal Mine Rescue Robot, Applied Mechanics and Materials, Volume 470, December, 2013, pages 650-653, (2013).

DOI: 10.4028/www.scientific.net/amm.470.650

Google Scholar

[15] Yang Xue et al., A New Approach for Autonomous Robot Obstacle Avoidance Using PSD Infrared Sensor Combined with Digital Compass, Applied Mechanics and Materials, Volume 511-512, February, 2014, pages 101-104, (2014).

DOI: 10.4028/www.scientific.net/amm.511-512.101

Google Scholar

[16] Martin Vondráček et al., Multi-Robot System for Mapping of the Unknown Environment, Applied Mechanics and Materials, Volume 511-512, pages 827-833, (2014).

DOI: 10.4028/www.scientific.net/amm.511-512.827

Google Scholar

[17] Ping Peng et al., Dynamic Analysis of the Wheel-Legged Mobile Robot, Applied Mechanics and Materials, Volume 344, pages 174-181, (2013).

DOI: 10.4028/www.scientific.net/amm.344.174

Google Scholar

[18] Hong Ji Zhang et al., Parameter Self-Adjusting Path Tracking Algorithm of Mobile Robots, Applied Mechanics and Materials, Volume 418, pages 10-14, (2013).

DOI: 10.4028/www.scientific.net/amm.418.10

Google Scholar

[19] Xiao Dong Tan et al., A Algorithm of Path Planning Based on Multiple Mobile Robots, Applied Mechanics and Materials, Volume 470, pages 621-624, (2013).

DOI: 10.4028/www.scientific.net/amm.470.621

Google Scholar

[20] Hao Wang et al., A Mobile Robot Obstacle Avoidance Method Based on Improved Potential Field Method, Applied Mechanics and Materials, Volume 467, pages 496-501, (2013).

DOI: 10.4028/www.scientific.net/amm.467.496

Google Scholar

[21] J. Ivanka, Ultrasonic sensors in commercial safety industry and in mechatronics systems. In: Sborník přednášek , mezinárodní konference MMAMS´2009, Modelovanie mechanických a mechatronických sústav, Zemplínská Šírava, Slovenská republika, 22. -24. 9. 2009, 2009, s. 297 - 301, ISSN 0543-5846.

Google Scholar

[22] J. Ivanka, P. Navrátil, Educational laboratory robotic system. In: Security magazín. Roč. XVII, vyd. 63, 2/2010, vyd. Familymedia, Praha, 2010, s. 34-37, ISSN 1210 - 8723.

Google Scholar

[23] L. Hargaš, M. Hrianka, D. Koniar and P. Izák, P. Quality Assessment SMT Technology by Virtual Instrumentation, Applied Electronics 2007, Pilsen, 5. – 6. 9. 2007, ISBN 987-80-7043-537-3, (2007).

Google Scholar