[1]
F. Onofri, K.F. Ren, and C. Grisolia, Development of an in situ optical diagnostic of dusts in ITER, 14th Int Symp on Applications of Laser Techniques to Fluid Mechanics, Lisbon, Portugal, 07-10 July, (2008).
Google Scholar
[2]
G. Crawley, M. Cournil and D. Di Benedetto, Size analysis of fine particle suspensions by spectral turbidimetry: potential and limits, Powder Technology 91(3): 197-208 (1997).
DOI: 10.1016/s0032-5910(96)03252-4
Google Scholar
[3]
M. I. Mishchenko, J. W. Hovenier and L. D. Travis, Light scattering by nonspherical particles: Theory, measurements, and applications, Academic Press, San Diego, (2000).
DOI: 10.1016/b978-012498660-2/50026-4
Google Scholar
[4]
S-K. Hong and J. Winter, Size dependence of optical properties and internal structure of plasma grown carbonaceous nanoparticles studied by in situ Rayleigh-Mie scattering ellipsometry, J. of Applied Physics 100: 064303, (2006).
DOI: 10.1063/1.2338132
Google Scholar
[5]
R. Xu, Particle characterization light scattering methods, Kluwer Academic Publishers, Miami, (2001).
Google Scholar
[6]
S. Castellini, B. Moroni, D. Cappelletti, PMetro: Measurement of urban aerosols on a mobile platform, Measurement, Volume 49, March 2014, Pages 99-106. (2014).
DOI: 10.1016/j.measurement.2013.11.045
Google Scholar
[7]
Y.S. Kim, et all., Dust particles in the free atmosphere over desert areas on the Asian continent: measurements from summer 2001 to summer 2002 with balloon-borne optical particle counter and lidar, Dunhuang, China. Journal of Geophysical Research 109, 10. 1029/2002JD003269. (2004).
DOI: 10.1029/2002jd003269
Google Scholar
[8]
W.C. Malm, B.A. Schichtel, M.L. Pitchford, L.L. Ashbaugh, R.A. Eldred, Spatial and monthly trends in speciated fine particle concentration in the United States. Journal of Geophysical Research-Atmospheres 109, D03306, doi: 10. 1029/2003JD003739. (2004).
DOI: 10.1029/2003jd003739
Google Scholar
[9]
F. Adamo, G. Andria, G. Cavone, C. De Capua, A. M. L. Lanzolla, R. Morello, M. Spadavecchia, Estimation of ship emissions in the port of Taranto, Measurement, Volume 47, January 2014, Pages 982-988, (2014).
DOI: 10.1016/j.measurement.2013.09.012
Google Scholar
[10]
J.C. Chow, J.G. Watson, D.H. Lowenthal,; L. -W.A. Chen, R.J. Tropp, K. Park, K.L. Magliano, PM2. 5 and PM10 mass measurements in California's San Joaquin Valley. Aerosol Sci. Technol., 40(10): 796-810. (2006).
DOI: 10.1080/02786820600623711
Google Scholar
[11]
V. Etyemezian, H.D. Kuhns, J.A. Gillies, M.C. Green, M.L. Pitchford, J.G. Watson, Vehicle-based road dust emission measurement I. Methods and calibration. Atmos. Environ., 37(32): 4559-4571. (2003).
DOI: 10.1016/s1352-2310(03)00528-4
Google Scholar
[12]
R. Gehrig, C. Hueglin, B. Schwarzenbach, T. Seitz, B. Buchmann, A new method to link PM10 concentrations from automatic monitors to the manual gravimetric reference method according to EN12341. Atmos. Environ., 39(12): 2213-2223. (2005).
DOI: 10.1016/j.atmosenv.2005.01.005
Google Scholar
[13]
H. Grimm, D.J. Eatough, Aerosol measurement: The use of optical light scattering for the determination of particulate size distribution, and particulate mass, including the semi-volatile fraction. J. Air Waste Manage. Assoc., 59(1): 101-107. (2009).
DOI: 10.3155/1047-3289.59.1.101
Google Scholar
[14]
M. Heim, B.J. Mullins, H. Umhauer, G. Kasper, Performance evaluation of three optical particle counters with an efficient multimodal, calibration method. J. Aerosol Sci., 39(12): 1019-1031. (2008).
DOI: 10.1016/j.jaerosci.2008.07.006
Google Scholar
[15]
C. Hoffmann, R. Funk, M. Sommer, Y. Li, Temporal variations in PM10 and particle size distribution during Asian dust storms in Inner Mongolia. Atmos. Environ., 42(36): 8422-8431. (2008).
DOI: 10.1016/j.atmosenv.2008.08.014
Google Scholar
[16]
S. Hering, G. Cass, The magnitude of bias in the measurement of PM2. 5 arising from volatilization of particulate nitrate from teflon filters. Journal of the Air & Waste Management Association 49 (6), 725–733. (1999).
DOI: 10.1080/10473289.1999.10463843
Google Scholar
[17]
A. Gmiterko, S. Slosarčík, M. Dovica, Algorithm of Nonrespirable Dust Fraction Suppression Using an Optical Transducer of Dust Mass Concentration. IEEE Transactions on Instrumentation and Measurement. 47, 1998, No. 5, pp.1228-1233. (1998).
DOI: 10.1109/19.746588
Google Scholar
[18]
C. Bhasker, Flow simulation in industrial cyclone separator. Advances in Engineering Software Volume 41, Issue 2, February 2010, Pages 220–228. (2010).
DOI: 10.1016/j.advengsoft.2009.08.004
Google Scholar
[19]
SKC, Inc.: Respirable dust cyclone – Publication No. 1711 Rev 1103 also available online: http: /www. skcinc. com/instructions/1711. pdf. cited 11-10-(2011).
Google Scholar
[20]
Sigrist Process Photometer – Glossary. Sigrist-Photometer AG, CH-6373 Ennetbürgen. also available online: http: /www. photometer. com/en/abc/index. html. cited 11-10-(2011).
Google Scholar
[21]
VDI 2066 part 6: Particulate matter measurement. Measurement of particulate matter in flowing gases. Determination of dust load by continuous measurement of scattered light with the photometer KTN. January (1989).
Google Scholar
[22]
A. Gmiterko, M. Dovica, R. Palenčár, M. Kelemen, S. Slosarčík, T. Kelemenová, L. Soos, S. Ďuriš, Suppression of the Nonrespirable Fraction of Dust When Measuring Its Mass Concentration in a Working Medium, 2014. In: Measurement Techniques. Vol. 56, no. 10 (2014).
DOI: 10.1007/s11018-014-0354-y
Google Scholar
[23]
Kai Zheng et al., Research on Dust Concentration Measurement Technique and Experiment Based on Charge Induction, Applied Mechanics and Materials, 333-335, 370, (2013).
DOI: 10.4028/www.scientific.net/amm.333-335.370
Google Scholar
[24]
Xu Yi Deng et al., The Experimental Study on Detection of Dust Concentration by Back Scattering Method, Advanced Materials Research, 753-755, 2400, (2013).
DOI: 10.4028/www.scientific.net/amr.753-755.2400
Google Scholar
[25]
Da Nian Li, Concentration Measuring Method in PM2. 5 Monitoring Scheme, Applied Mechanics and Materials, 312, 631, (2013).
Google Scholar
[26]
Jian Bin Liu et al., Numerical Simulation and Experimental Study on Light Scattering by Biological Cells with Discrete Dipole Approximation, Advanced Materials Research, 760-762, 105, (2013).
DOI: 10.4028/www.scientific.net/amr.760-762.105
Google Scholar
[27]
Yu Lieh Wu et al., Analysis of Indoor Air Quality for the Split-Type Air Conditioner with Air Change Function in an Office Environment, Applied Mechanics and Materials, 328, 328, (2013).
DOI: 10.4028/www.scientific.net/amm.328.328
Google Scholar
[28]
Shi Hong Cen et al., On the Microstructure of Different Types of Particles in PM10 in Beijing-Tianjin-Tangshan City Group Agglomeration Atmosphere, Applied Mechanics and Materials, 448-453, 341, (2013).
DOI: 10.4028/www.scientific.net/amm.448-453.341
Google Scholar
[29]
Bian Hong Zhou et al., Influence of Dust Emission on Xi'an Atmospheric Organochlorine Pesticide Pollution, Applied Mechanics and Materials, 246-247, 576, (2012).
DOI: 10.4028/www.scientific.net/amm.246-247.576
Google Scholar
[30]
Zhen Feng Shao et al., Design and Implementation of Mobile Monitoring System for Environmental Monitoring, Applied Mechanics and Materials, 295-298, 933, (2013).
DOI: 10.4028/www.scientific.net/amm.295-298.933
Google Scholar
[31]
P. Kuryło, P., M. Nagórny, Some Problems of Automation and Robotization of Welding Process in the Large Size Constructions. Pomiary, Automatyka, Robotyka, Vol. 16, No. 2, ISSN 1427-9126, pp.132-136. (2012).
DOI: 10.14313/par
Google Scholar
[32]
G. Maniarski, P. Kuryło, Komunikacja w systemach wieloagentowych stosowanych w sterowaniu robotami,. Teoria maszyn i mechanizmów: XX Proc. of scientific and didactic. Zielona Góra, Poland, 2006. Zielona Góra: Publishing. University of Zielona Gora, 2006 T. 1, pp.375-380. ISBN: 83-7481-043-2. (2006).
DOI: 10.15557/pimr.2021.0036
Google Scholar