[1]
S. Deng, S.Y. Lin, W.L. Chang, Application of multiclass support vector machines for fault diagnosis of field air defense gun, Expert Systems with Applications 38(5). (2011)6007–6013.
DOI: 10.1016/j.eswa.2010.11.020
Google Scholar
[2]
Purushotham V. Multi-fault diagnosis of rolling bearing elements using wavelet analysis and hidden Markov model [J], NDT&EInternational, 2005, 38(8): 654-664.
DOI: 10.1016/j.ndteint.2005.04.003
Google Scholar
[3]
K. Watanabe, S. Hirota,L. Hou, Diagnosis of multiple simultaneous fault via hierarchical artificial neural networks, American Institute of Chemical Engineers Journal 40(5)(1994)839–848.
DOI: 10.1002/aic.690400510
Google Scholar
[4]
M.E. Tipping, Sparse Bayesian learning and the relevance vector machine, Journal of Machine Learning Research, vol. 1, no. 3, p.211–244, (2001).
Google Scholar
[5]
Richman J S. Physiological time-series analysis using approximate entropy and sample entropy [J], American Journal of Physiology-Heart and Circulatory Physiology, 2000, 278(6): 2039-(2049).
DOI: 10.1152/ajpheart.2000.278.6.h2039
Google Scholar
[6]
Zhao Zhihong, Yang Shaopu. Roller Bearing Fault diagnosis Based on EMD Sample Entropy. International Conference on Intelligent Information Technology Application. 2010, vol 2, 72-76.
Google Scholar
[7]
C.M. Vong P.K. Wong, Engine ignition signal diagnosis with wavelet packet transform and multi-class least squares support vector machines, Expert Syst. Appl. 21(2011), p.2560–2574.
DOI: 10.1016/j.eswa.2011.01.058
Google Scholar
[8]
Part, Vilakazi CB, Marwala T. Incremental learning and its application to bushing condition monitoring [J]. Lecture Notes in Computer Science(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). 2007: 1237-1246.
DOI: 10.1007/978-3-540-72383-7_144
Google Scholar
[9]
Tang W H, Wu Q H. Condition Monitoring and Assessment of Power Transformers Using Computational Intelligence [M]. New York: Springer Verlag Press,2011: 95-104.
Google Scholar
[10]
Gholami B, HaddadW. Relevance Vector Machine Learning for Neonate Pain Intensity Assessment Using Digital Imaging [J]. IEEE Transactions on Biomedical Engineering,2010, 57(6): 1457-1466.
DOI: 10.1109/tbme.2009.2039214
Google Scholar
[11]
Schwenker F. Hierarchical support vector machines for multi-class pattern recognition[C]/Fourth International conference on Knowledge-Based Intelligent Engineering Systems & Allied Technologies. Brighton, UK, (2000).
DOI: 10.1109/kes.2000.884111
Google Scholar
[12]
Rakotomamonjy A, Bach F R, Canu S, Grandvalet Y. Simple MKL. The Journal of Machine Learning Research, 2008, 9(11): 2491-2521.
Google Scholar
[13]
Damoulas T, Girolami M A. Probabilistic multi-class multi-kernel learning: On protein fold recognition and remote homology detection [J]. Bioinformatics, 2008, 24(10): 1264-1270.
DOI: 10.1093/bioinformatics/btn112
Google Scholar
[14]
Thayananthan A. Relevance Vector Machine based Mixture of Experts[R]. Department of Engineering, University of Cambridge, (2005).
Google Scholar