A Kind of Deterministic Small-World Network Derived from Polygonal Nesting

Article Preview

Abstract:

A kind of deterministic small-world network is constructed based on polygonal nesting with discrete degree distribution. By adding contrapuntal edges and alternate-position edges between adjacent nests, the intra-nest edges and the long-range edges from the central node to certain outer layer nodes, the proposed polygonal nesting small-world (PNSW) networks have the property of large clustering coefficients. Also these kinds of PNSW networks have small diameter, average node degree and average path length, whose moments of k order are given.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

543-549

Citation:

Online since:

September 2014

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. E. J. Newman: SIAM Review, Vol. 45 (2003), pp.167-256.

Google Scholar

[2] Z. Z. Zhang, L. L. Rong, and C. H. Guo: Phys. A, Vol. 363 (2006), pp.567-572.

Google Scholar

[3] D. J. Watts and S. H. Strogatz: Nature, Vol. 393 (1998), pp.440-442.

Google Scholar

[4] M. E. J. Newman and D. J. Watts: Phys. Rev. E, Vol. 60 (1999), pp.7332-7342.

Google Scholar

[5] M. E. J. Newman and D. J. Watts: Phys. Letter A, 1999, 263(4-6): 341-346.

Google Scholar

[6] J. Kleinberg, in: 32nd Annual ACM Symposium on Theory of Computing, edited by ACM Publications, Portland (2000).

Google Scholar

[7] J. Kleinberg, in: Advanced in Neural Information Processing System, edited by Thomas G. Dietterich, Sue Becker, and Zoubin Ghahramani, Vancouve (2001).

Google Scholar

[8] F. Comellas, J. Ozon and J. G. Peters: Information Processing Letters, vol., 76(2000), pp.83-90.

Google Scholar

[9] F. Comellas and S. Gago, in: 7th International Symposium on Parallel Architecture, Algorithms and Networks, edited by IEEE Publications, Hongkong (2004).

Google Scholar

[10] F. Comellas, M. Mitjana and J. G. Peters, in: 9th Int. Coll. on Structural Information & Communication Complexity, edited by Carleton Scientific, Waterloo (2002).

Google Scholar

[11] L. Barriere, F. Comellas and C. Dalfo: J. Phys. A: Math. Gen., Vol. 39(2006), pp.11739-11753.

Google Scholar

[12] Z. Zhang, S. Zhou, Z. Su, T. Zou and J Guan: European Physical Journal B, Vol. 65(2008), pp.141-147.

Google Scholar

[13] W. J. Xiao and B. Parhami: Information Processing Letters, Vol. 97(2006), pp.115-117.

Google Scholar

[14] W. Wei, D. Gao and Z. Sun: Computer Application, Vol. 27 (2007), pp.2406-2408.

Google Scholar

[15] Z. Z. Zhang, L. L. Rong and F. Comellas: Physica A: Statistical Mechanics and Its Applications, Vol. 364 (2006), pp.610-618.

DOI: 10.1016/j.physa.2005.09.042

Google Scholar

[16] Z. Z. Zhang, L. L. Rong and S. Zhou: Physical Review E, Vol. 74(2006).

Google Scholar

[17] J. S. Andrade, H. J. Herrmann, R. F. S. Andrade and L. R. da-Silva: Physical Review Letter, Vol. 94(2005).

Google Scholar

[18] T. Zhou, G. Yan and B. Wang: Physical Review E, Vol. 71(2005).

Google Scholar

[19] J. P. K. Doye and C. P. Massen: Physical Review E, Vol. 71(2005).

Google Scholar

[20] Z. Z. Zhang, L. L. Rong and C. H. Guo: Physica A: Statistical Mechanics and Its Applications, Vol. 363 (2006), pp.567-572.

Google Scholar

[21] A. Barabasi, E. Ravasz and T. Vicsek: Physica A: Statistical Mechanics and Its Applications, Vol. 299 (2001), pp.559-564.

DOI: 10.1016/s0378-4371(01)00369-7

Google Scholar

[22] S. Jung, S. Kim and B. Kahng: Physical Review E, Vol. 65(2002).

Google Scholar