Analysis of Selected Properties of Cutting Ceramics at Machining Process of Bearing Steel 100Cr6

Article Preview

Abstract:

Cutting tool durability is very important cutting tool property. Especially for cutting ceramic is necessary to define durability dependence on available set of cutting speeds and to determine lifetime of tools made of cutting ceramic. Durability of cutting tools is defined in standard ISO 3685. In standard ISO 3685 is defined T-vc dependence for different cutting materials and standard included process evaluation of tool durability for cutting materials made of high speed steel, sintered carbide and cutting ceramic. Specification cutting tools durability made of cutting ceramic in machining process of steel 100Cr6 is very important for economics of small and medium-sized enterprises, because cutting tool durability is factor that significantly affects the budget of these enterprises. This problematic is determined for small and medium-sized manufacturers of bearings, because steel 100Cr6 is most commonly used for production of bearing rings 100 mm in diameter. This material is usable for actuator (actuators and reduction gears) too. Description of cutting ceramic durability could mean for bearings manufacturer determination of optimal cutting parameter with maximum possible use of tool lifetime. Standard ISO 3685 contains instructions how to create T-vc dependence for cutting tools made of cutting ceramic. In this standard are only instructions how to create T-vc dependence according to Taylor. The article compares T-vc dependencies for various cutting ceramics (Al2O3, Al2O3+ZrO2, Al2O3+TiCN) with T-vc dependence defined in standard ISO 3685, because this standard describes T-vc dependence for all entered cutting materials together.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

308-316

Citation:

Online since:

August 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Helmi and H. El-Hofy, Machining Technology-Machine Tools and Operations, CRC Press, 2008, 398 p.

Google Scholar

[2] B.S. P. Nagendra, R.K. Mittal, Elements of Manufacturing Process, Prentice-Hall of India Private Limited, 2006, 496 p.

Google Scholar

[3] E. Isakov, Cutting Data for turning of steel, Industrial Press, New York, 2009, 316 p.

Google Scholar

[4] E.D. Whitney, Ceramic Cutting Tools, William Andrew Publishing/Noyes, 1994, 353 p.

Google Scholar

[5] I. Orlovsky, M. Hatala, M. Janak, Creation of simulation model of ceramic granulate production in spraying kiln, Technical Gazette 17/4 (2010) 419-423.

Google Scholar

[6] J. Duplák, Identification of comprehensive T-vc dependence. Thesis, FMT Prešov, 2010, 106p.

Google Scholar

[7] J. Mačala, I. Pandová, Natural zeolite-clinoptilolite - raw material serviceable in the reduction of toxical components at combustion engines noxious gases, Gospodarka surowcami mineralnymi 23/4 (2007) 19-25.

DOI: 10.2478/v10269-012-0015-1

Google Scholar

[8] J. T. Black, R.A. Kohser, Degarmo's Materials & Processes in Manufacturing, Wiley India Private Limited, 2007, 1032 p.

Google Scholar

[9] K. Monková, P. Monka, D. Jakubeczyová, The research of the high speed steels produced by powder and casting metallurgy from the view of tool cutting life, Applied Mechanics and Materials 302 (2013) 269-274.

DOI: 10.4028/www.scientific.net/amm.302.269

Google Scholar

[10] K. Vasilko, Theory and practise of splinter machining, FMT Prešov, 2009, 546 p.

Google Scholar

[11] S. Fabian, P. Čačko, Experimental Measurement and Examination of Independent and Combined Interaction of Vibrodiagnostic and Tribotechnical Methods, Applied Mechanics and Materials 308 (2013) 51-56.

DOI: 10.4028/www.scientific.net/amm.308.51

Google Scholar

[12] M. Neslušan et al., Experimental methods in splinter machining, EDIS ŽU Žilina, 2007, 343 p.

Google Scholar

[13] M.C. Shaw, Metal Cutting Principles, Oxford University Press, 2005, 651 p.

Google Scholar

[14] P. Michalik, J. Zajac, Intelligently programming of holes machining, Manufacturing Engineering 9/4 (2010) 63-65.

Google Scholar

[15] R. Cep et al., Ceramic cutting tool tests with interupted cut simulator, in: Proc. of Int. Conf. on Innovative Technologies IN-TECH 2010, Praha: Sept. 14-16, 2010. Jaroměř: AS, 2010, pp.144-148.

Google Scholar

[16] STN ISO 3685: Tool-life testing with single-point turning tools, (1999).

Google Scholar

[17] T. Krenický, M. Rimár, Monitoring of vibrations in the technology of AWJ, Key Engineering Materials 496 (2012) 229-234.

DOI: 10.4028/www.scientific.net/kem.496.229

Google Scholar

[18] A. Panda, J. Duplák, J. Jurko, M. Behún, Comprehensive Identification of Sintered Carbide Durability in Machining Process of Bearings Steel 100CrMn6, Advanced Materials Research 340 (2012) 30-33.

DOI: 10.4028/www.scientific.net/amr.340.30

Google Scholar

[19] I. Pandová, T. Gondová, K. Dubayová, Natural and modified clinoptilolite testing for reduction of harmful substance in manufacturing exploitation, Advanced Materials Research 518-523 (2012) 1757-1760.

DOI: 10.4028/www.scientific.net/amr.518-523.1757

Google Scholar

[20] E. Ragan, J. Dobránsky, P. Baron, M. Kočiško, J. Svetlík, Dynamic of taking out molding parts at injection molding, Metallurgy 51/4 (2012) 567-570.

Google Scholar

[21] J. Jurko, A. Panda, M. Behún, Prediction of a new form of the cutting tool according to achieve the desired surface quality, Applied Mechanics and Materials 268-270 (2013) 473-476.

DOI: 10.4028/www.scientific.net/amm.268-270.473

Google Scholar

[22] J. Jurko, A. Panda, Identification the tool wear mechanisms and forms at drilling of a new stainless steels, in: Proc. of AASRI 2012, Hong Kong, Vol. 3/3, Elsevier 2013, pp.127-132.

DOI: 10.1016/j.aasri.2012.11.022

Google Scholar

[23] M. Tóthová, J. Piteľ, J. Boržíková, Operating Modes of Pneumatic Artificial Muscle Actuator, Applied Mechanics and Materials 308 (2013) 39-44.

DOI: 10.4028/www.scientific.net/amm.308.39

Google Scholar

[24] P. Semančo, M. Fedák, M. Rimár, E. Ragan, Equation model to evaluate fluidity of aluminium alloys under pressure die-casting conditions with an application, Advanced Materials Research 505 (2012) 190-194.

DOI: 10.4028/www.scientific.net/amr.505.190

Google Scholar

[25] R. Kreheľ, Ľ. Straka, T. Krenický, Diagnostics of Production Systems Operation Based on Thermal Processes Evaluation, Applied Mechanics and Materials 308 (2013) 121-126.

DOI: 10.4028/www.scientific.net/amm.308.121

Google Scholar

[26] M. Zelenak, et al., Comparison of mechanical properties of surface layers with use of nanoindentation and microindentation tests, Metalurgija 51/3 (2012) 309-312.

Google Scholar

[27] M. Zelenak et al., Measurement and analysis of the hardnes of aluminium surface layers by the nanoindentation and scratch tests, Chemické Listy 105 (2011) 688-691.

Google Scholar

[28] A. Panda, J. Duplak, J. Jurko, M. Behun, M. Jančík, The analysis of ceramic cutting tools durability in machining process of steel C60 applied according to standard ISO 3685, Applied Mechanics and Materials 275-277 (2013) 2190-2194.

DOI: 10.4028/www.scientific.net/amm.275-277.2190

Google Scholar

[29] A. Panda, J. Duplak, J. Jurko, M. Behun, New experimental expression of durability dependence for ceramic cutting tool, Applied Mechanics and Materials 275-277 (2013) 2230-2236.

DOI: 10.4028/www.scientific.net/amm.275-277.2230

Google Scholar

[30] A. Panda, J. Duplák, J. Jurko, J. Zajac, Turning bearing rings and determination of selected cutting materials durability, Advanced Science Letters 19/8 (2013) 2486-2489.

DOI: 10.1166/asl.2013.4943

Google Scholar

[31] J. Jurko, A. Panda, Study on screw drill wear when drilling a new ELC stainless steels and accompanying phenomena in the cutting zone, Advanced Science Letters 19/8 (2013) 2490-2493.

DOI: 10.1166/asl.2013.4944

Google Scholar

[32] Ľ. Straka, I. Čorný, R. Kreheľ, Evaluation of Capability of Measuring Device on the Basis of Diagnostics, Applied Mechanics and Materials 308 (2013) 69-74.

DOI: 10.4028/www.scientific.net/amm.308.69

Google Scholar

[33] M. Gombár, A. Vagaská, J. Kmec, P. Michal, Microhardness of the Coatings Created by Anodic Oxidation of Aluminium, Applied Mechanics and Materials 308 (2013) 95-100.

DOI: 10.4028/www.scientific.net/amm.308.95

Google Scholar

[34] T. Duranik, J. Ruzbarsky, F. Manlig, Proposal for possibilities of increating production productivity of thermosets compression molding with using process simulation software, Applied Mechanics and Materials 308 (2013) 192-194.

DOI: 10.4028/www.scientific.net/amm.308.191

Google Scholar

[35] S. Fabian, Š. Salokyová, The technological head vibrations with different abrasive mass flow rates, Applied Mechanics and Materials 308 (2013) 1-6.

DOI: 10.4028/www.scientific.net/amm.308.1

Google Scholar

[36] J. Mihalčová, Tribotechnical diagnosis in aircraft engine practice, Applied Mechanics and Materials 308 (2013) 57-62.

DOI: 10.4028/www.scientific.net/amm.308.57

Google Scholar

[37] I. Mrkvica, M. Janoš, P. Sysel, Cutting efficiency by drilling with tools from different materials, Advanced Materials Research 538-541 (2012) 1327-1331.

DOI: 10.4028/www.scientific.net/amr.538-541.1327

Google Scholar

[38] I. Mrkvica, M. Janoš, P. Sysel, Contribution to milling of materials on Ni base, Applied Mechanics and Materials 217-219 (2012) 2056-(2059).

DOI: 10.4028/www.scientific.net/amm.217-219.2056

Google Scholar

[39] T. Duraník, J. Ružbarský, M. Stopper, Influence on the Productivity of Modern Thermoset Preheating in the Compression Molding Technology, Advanced Materials Research 717 (2013) 74-78.

DOI: 10.4028/www.scientific.net/amr.717.74

Google Scholar

[40] J. Jurko, A. Panda, Verification of surface finish as an indicator of machinability in drilling of stainless steel by DIN 1. 4301, Applied Mechanics and Materials 229-231 (2012) 415-418.

DOI: 10.4028/www.scientific.net/amm.229-231.415

Google Scholar

[41] Š. Salokyová, The Verification of Different Abrasives Types Impact on Frequency Spectrum Vibrations, Academic Journal of Manufacturing Engineering 11/1 (2013) 108-113.

Google Scholar

[42] T. Zaborowski, Ekowytwarzanie. Gorzow, 2007, 100 p.

Google Scholar

[43] J. Duplák, T-vc dependence for cutting ceramic in standard ISO 3685, Manufacturing Engineering 9/4 (2010) 58-62.

Google Scholar

[44] J. Duplák, Verification of T-vc dependence for standard ISO 3685, in: Progressive technologies of machining: Papers of centre of progressive technologies 2010. FMT Prešov, 2010, pp.45-52.

Google Scholar

[45] M. Hatala, Variations of the plasma processes and effect of various plasma and shield gases, Scientific Bulletin 18 (2004) 127-130.

Google Scholar

[46] A. Panda, J. Jurko, M. Džupon, I. Pandová, Optimization of heat treatment bearings rings with goal to eliminate deformation of material, Chemické listy 105/16 (2011) 459-461.

Google Scholar

[47] A. Panda, J. Duplák, J. Jurko, Analytical Expression of T-vc dependence in standard ISO 3685 for cutting ceramic, Key Engineering Materials 480-481 (2011) 317-322.

DOI: 10.4028/www.scientific.net/kem.480-481.317

Google Scholar

[48] A. Panda, J. Duplák, J. Jurko, Theory and Practice in the process of T-vc dependence creation for selected cutting material, Advanced Materials Research 716 (2013) 261-265.

DOI: 10.4028/www.scientific.net/amr.716.261

Google Scholar

[49] A. Panda, J. Duplák, K. Vasilko, Comprehensive Identification of Durability for Selected Cutting Tool Applied on the Base of Taylor Dependence, Advanced Materials Research 716 (2013) 254-260.

DOI: 10.4028/www.scientific.net/amr.716.254

Google Scholar