[1]
A. Helmi and H. El-Hofy, Machining Technology-Machine Tools and Operations, CRC Press, 2008, 398 p.
Google Scholar
[2]
B.S. P. Nagendra, R.K. Mittal, Elements of Manufacturing Process, Prentice-Hall of India Private Limited, 2006, 496 p.
Google Scholar
[3]
E. Isakov, Cutting Data for turning of steel, Industrial Press, New York, 2009, 316 p.
Google Scholar
[4]
E.D. Whitney, Ceramic Cutting Tools, William Andrew Publishing/Noyes, 1994, 353 p.
Google Scholar
[5]
I. Orlovsky, M. Hatala, M. Janak, Creation of simulation model of ceramic granulate production in spraying kiln, Technical Gazette 17/4 (2010) 419-423.
Google Scholar
[6]
J. Duplák, Identification of comprehensive T-vc dependence. Thesis, FMT Prešov, 2010, 106p.
Google Scholar
[7]
J. Mačala, I. Pandová, Natural zeolite-clinoptilolite - raw material serviceable in the reduction of toxical components at combustion engines noxious gases, Gospodarka surowcami mineralnymi 23/4 (2007) 19-25.
DOI: 10.2478/v10269-012-0015-1
Google Scholar
[8]
J. T. Black, R.A. Kohser, Degarmo's Materials & Processes in Manufacturing, Wiley India Private Limited, 2007, 1032 p.
Google Scholar
[9]
K. Monková, P. Monka, D. Jakubeczyová, The research of the high speed steels produced by powder and casting metallurgy from the view of tool cutting life, Applied Mechanics and Materials 302 (2013) 269-274.
DOI: 10.4028/www.scientific.net/amm.302.269
Google Scholar
[10]
K. Vasilko, Theory and practise of splinter machining, FMT Prešov, 2009, 546 p.
Google Scholar
[11]
S. Fabian, P. Čačko, Experimental Measurement and Examination of Independent and Combined Interaction of Vibrodiagnostic and Tribotechnical Methods, Applied Mechanics and Materials 308 (2013) 51-56.
DOI: 10.4028/www.scientific.net/amm.308.51
Google Scholar
[12]
M. Neslušan et al., Experimental methods in splinter machining, EDIS ŽU Žilina, 2007, 343 p.
Google Scholar
[13]
M.C. Shaw, Metal Cutting Principles, Oxford University Press, 2005, 651 p.
Google Scholar
[14]
P. Michalik, J. Zajac, Intelligently programming of holes machining, Manufacturing Engineering 9/4 (2010) 63-65.
Google Scholar
[15]
R. Cep et al., Ceramic cutting tool tests with interupted cut simulator, in: Proc. of Int. Conf. on Innovative Technologies IN-TECH 2010, Praha: Sept. 14-16, 2010. Jaroměř: AS, 2010, pp.144-148.
Google Scholar
[16]
STN ISO 3685: Tool-life testing with single-point turning tools, (1999).
Google Scholar
[17]
T. Krenický, M. Rimár, Monitoring of vibrations in the technology of AWJ, Key Engineering Materials 496 (2012) 229-234.
DOI: 10.4028/www.scientific.net/kem.496.229
Google Scholar
[18]
A. Panda, J. Duplák, J. Jurko, M. Behún, Comprehensive Identification of Sintered Carbide Durability in Machining Process of Bearings Steel 100CrMn6, Advanced Materials Research 340 (2012) 30-33.
DOI: 10.4028/www.scientific.net/amr.340.30
Google Scholar
[19]
I. Pandová, T. Gondová, K. Dubayová, Natural and modified clinoptilolite testing for reduction of harmful substance in manufacturing exploitation, Advanced Materials Research 518-523 (2012) 1757-1760.
DOI: 10.4028/www.scientific.net/amr.518-523.1757
Google Scholar
[20]
E. Ragan, J. Dobránsky, P. Baron, M. Kočiško, J. Svetlík, Dynamic of taking out molding parts at injection molding, Metallurgy 51/4 (2012) 567-570.
Google Scholar
[21]
J. Jurko, A. Panda, M. Behún, Prediction of a new form of the cutting tool according to achieve the desired surface quality, Applied Mechanics and Materials 268-270 (2013) 473-476.
DOI: 10.4028/www.scientific.net/amm.268-270.473
Google Scholar
[22]
J. Jurko, A. Panda, Identification the tool wear mechanisms and forms at drilling of a new stainless steels, in: Proc. of AASRI 2012, Hong Kong, Vol. 3/3, Elsevier 2013, pp.127-132.
DOI: 10.1016/j.aasri.2012.11.022
Google Scholar
[23]
M. Tóthová, J. Piteľ, J. Boržíková, Operating Modes of Pneumatic Artificial Muscle Actuator, Applied Mechanics and Materials 308 (2013) 39-44.
DOI: 10.4028/www.scientific.net/amm.308.39
Google Scholar
[24]
P. Semančo, M. Fedák, M. Rimár, E. Ragan, Equation model to evaluate fluidity of aluminium alloys under pressure die-casting conditions with an application, Advanced Materials Research 505 (2012) 190-194.
DOI: 10.4028/www.scientific.net/amr.505.190
Google Scholar
[25]
R. Kreheľ, Ľ. Straka, T. Krenický, Diagnostics of Production Systems Operation Based on Thermal Processes Evaluation, Applied Mechanics and Materials 308 (2013) 121-126.
DOI: 10.4028/www.scientific.net/amm.308.121
Google Scholar
[26]
M. Zelenak, et al., Comparison of mechanical properties of surface layers with use of nanoindentation and microindentation tests, Metalurgija 51/3 (2012) 309-312.
Google Scholar
[27]
M. Zelenak et al., Measurement and analysis of the hardnes of aluminium surface layers by the nanoindentation and scratch tests, Chemické Listy 105 (2011) 688-691.
Google Scholar
[28]
A. Panda, J. Duplak, J. Jurko, M. Behun, M. Jančík, The analysis of ceramic cutting tools durability in machining process of steel C60 applied according to standard ISO 3685, Applied Mechanics and Materials 275-277 (2013) 2190-2194.
DOI: 10.4028/www.scientific.net/amm.275-277.2190
Google Scholar
[29]
A. Panda, J. Duplak, J. Jurko, M. Behun, New experimental expression of durability dependence for ceramic cutting tool, Applied Mechanics and Materials 275-277 (2013) 2230-2236.
DOI: 10.4028/www.scientific.net/amm.275-277.2230
Google Scholar
[30]
A. Panda, J. Duplák, J. Jurko, J. Zajac, Turning bearing rings and determination of selected cutting materials durability, Advanced Science Letters 19/8 (2013) 2486-2489.
DOI: 10.1166/asl.2013.4943
Google Scholar
[31]
J. Jurko, A. Panda, Study on screw drill wear when drilling a new ELC stainless steels and accompanying phenomena in the cutting zone, Advanced Science Letters 19/8 (2013) 2490-2493.
DOI: 10.1166/asl.2013.4944
Google Scholar
[32]
Ľ. Straka, I. Čorný, R. Kreheľ, Evaluation of Capability of Measuring Device on the Basis of Diagnostics, Applied Mechanics and Materials 308 (2013) 69-74.
DOI: 10.4028/www.scientific.net/amm.308.69
Google Scholar
[33]
M. Gombár, A. Vagaská, J. Kmec, P. Michal, Microhardness of the Coatings Created by Anodic Oxidation of Aluminium, Applied Mechanics and Materials 308 (2013) 95-100.
DOI: 10.4028/www.scientific.net/amm.308.95
Google Scholar
[34]
T. Duranik, J. Ruzbarsky, F. Manlig, Proposal for possibilities of increating production productivity of thermosets compression molding with using process simulation software, Applied Mechanics and Materials 308 (2013) 192-194.
DOI: 10.4028/www.scientific.net/amm.308.191
Google Scholar
[35]
S. Fabian, Š. Salokyová, The technological head vibrations with different abrasive mass flow rates, Applied Mechanics and Materials 308 (2013) 1-6.
DOI: 10.4028/www.scientific.net/amm.308.1
Google Scholar
[36]
J. Mihalčová, Tribotechnical diagnosis in aircraft engine practice, Applied Mechanics and Materials 308 (2013) 57-62.
DOI: 10.4028/www.scientific.net/amm.308.57
Google Scholar
[37]
I. Mrkvica, M. Janoš, P. Sysel, Cutting efficiency by drilling with tools from different materials, Advanced Materials Research 538-541 (2012) 1327-1331.
DOI: 10.4028/www.scientific.net/amr.538-541.1327
Google Scholar
[38]
I. Mrkvica, M. Janoš, P. Sysel, Contribution to milling of materials on Ni base, Applied Mechanics and Materials 217-219 (2012) 2056-(2059).
DOI: 10.4028/www.scientific.net/amm.217-219.2056
Google Scholar
[39]
T. Duraník, J. Ružbarský, M. Stopper, Influence on the Productivity of Modern Thermoset Preheating in the Compression Molding Technology, Advanced Materials Research 717 (2013) 74-78.
DOI: 10.4028/www.scientific.net/amr.717.74
Google Scholar
[40]
J. Jurko, A. Panda, Verification of surface finish as an indicator of machinability in drilling of stainless steel by DIN 1. 4301, Applied Mechanics and Materials 229-231 (2012) 415-418.
DOI: 10.4028/www.scientific.net/amm.229-231.415
Google Scholar
[41]
Š. Salokyová, The Verification of Different Abrasives Types Impact on Frequency Spectrum Vibrations, Academic Journal of Manufacturing Engineering 11/1 (2013) 108-113.
Google Scholar
[42]
T. Zaborowski, Ekowytwarzanie. Gorzow, 2007, 100 p.
Google Scholar
[43]
J. Duplák, T-vc dependence for cutting ceramic in standard ISO 3685, Manufacturing Engineering 9/4 (2010) 58-62.
Google Scholar
[44]
J. Duplák, Verification of T-vc dependence for standard ISO 3685, in: Progressive technologies of machining: Papers of centre of progressive technologies 2010. FMT Prešov, 2010, pp.45-52.
Google Scholar
[45]
M. Hatala, Variations of the plasma processes and effect of various plasma and shield gases, Scientific Bulletin 18 (2004) 127-130.
Google Scholar
[46]
A. Panda, J. Jurko, M. Džupon, I. Pandová, Optimization of heat treatment bearings rings with goal to eliminate deformation of material, Chemické listy 105/16 (2011) 459-461.
Google Scholar
[47]
A. Panda, J. Duplák, J. Jurko, Analytical Expression of T-vc dependence in standard ISO 3685 for cutting ceramic, Key Engineering Materials 480-481 (2011) 317-322.
DOI: 10.4028/www.scientific.net/kem.480-481.317
Google Scholar
[48]
A. Panda, J. Duplák, J. Jurko, Theory and Practice in the process of T-vc dependence creation for selected cutting material, Advanced Materials Research 716 (2013) 261-265.
DOI: 10.4028/www.scientific.net/amr.716.261
Google Scholar
[49]
A. Panda, J. Duplák, K. Vasilko, Comprehensive Identification of Durability for Selected Cutting Tool Applied on the Base of Taylor Dependence, Advanced Materials Research 716 (2013) 254-260.
DOI: 10.4028/www.scientific.net/amr.716.254
Google Scholar