New Results in Dynamics Stability Problems of Elastic Rods

Article Preview

Abstract:

This article is about the nonlinear dynamic stability problems of the exact (Cosserat) theory of elastic rods. There is examined the general geometrically nonlinear theory with no restrictions on displacements and rotations being imposed. In this article, it is shown that the variational problem can be defined as the search for the stationary point of the Hamilton’s functional. The new exact solutions of the stability problems for different types of the end fixities of the rod were obtained taking into account bending, shear and longitudinal stiffness.

You might also be interested in these eBooks

Info:

* - Corresponding Author

[1] D.P. Goloskokov, P.А. Zhilin, Obshaja nelinejnaja teorija uprugih sterzhnej s prilozheniem k opisaniju jeffekta Pojntinga, Deposited VINITI No. 1912-V87, Dep., 20 p. (Russian).

Google Scholar

[2] V.V. Eliseev, Mehanika uprugih sterzhnej, Saint-Petersburg, SPbSPU, 1994, 88 p. (Russian).

Google Scholar

[3] P.A. Zhilin, A.D. Sergeev, Ravnovesie i ustojchivost' tonkogo sterzhnja, nagruzhennogo konservativnym momentum. Mehanika i processy upravlenija, Trudy SPbSPU, 1994, No. 448, pp.47-56. (Russian).

Google Scholar

[4] P.A. Zhilin, A.D. Sergeev, T.P. Tovstik, Nelinejnaja teorija sterzhnej i ee prilozhenija, Trudy XXIV letnej shkoly: Analiz i sintez nelinejnyh mehanicheskih kolebatel'nyh sistem, Sankt-Peterburg, 1997, p.313 – 337 (Russian).

Google Scholar

[5] P.A. Zhilin, Prikladnaja mehanika, Teorija tonkih uprugih sterzhnej, SPb, Izd-vo SPbSPU, 2007, 102 p. (Russian).

Google Scholar

[6] V.V. Eliseev, T.V. Zinoveva, Mehanika tonkostennyh konstrukcij, Teorija sterzhnej, SPb, Izd-vo SPbSPU, 2008, 96 p. (Russian).

Google Scholar

[7] G. Jelenic, M.A. Crisfield, Geometrically exact 3D beam theory: implementation of a strain-invariant finite element for static and dynamics. Comp. Meths. Appl. Mech. Engng, 1999, No. 171, pp.141-171.

DOI: 10.1016/s0045-7825(98)00249-7

Google Scholar

[8] A. A. Shabana and R.Y. Yakoub, Three dimensional absolute nodal coordinate formulation for beam elements theory. ASME Journal of Mechanical Design, 123 4 (2001) 606–613.

DOI: 10.1115/1.1410100

Google Scholar

[9] J. N. Reddy, An Introduction to Nonlinear Finite Element Analysis. Oxford University Press, 2004, 482 p.

Google Scholar

[10] S.S. Antman, Nonlinear problems of elasticity, Springer, Berlin Heidelberg New York, 2005, 835 p.

Google Scholar

[11] J. Gerstmayr, A.A. Shabana, Analysis of thin beams and cables using the absolute nodal coordinate formulation. Nonlinear Dyn. 45 1-2 (2006) 109-130.

DOI: 10.1007/s11071-006-1856-1

Google Scholar

[12] A.A. Shabana, Computational continuum mechanics. Cambridge University Press, 2008, 349 p.

Google Scholar

[13] P. Wriggers, Nonlinear finite element methods. Springer-Verlag Berlin Heidelberg, 2008, 566 p.

Google Scholar

[14] S. Krenk, Non-linear modelling and analysis of solids and structures. Cambridge University Press, 2009, 361 р.

Google Scholar

[15] А. Ibrahimbegovic, Nonlinear Solid Mechanics. Springer Science+Business Media B.V. 2009, 585 p.

Google Scholar

[16] D. Bigoni, Nonlinear solid mechanics: bifurcation theory and material instability. Cambridge University Press, 2012, 550p.

Google Scholar

[17] S. Coskun, B. Öztürk, Elastic Stability Analysis of Euler Columns Using Analytical Approximate Techniques, Advances in Computational Stability Analysis, Dr. Safa Bozkurt Coşkun (Ed. ), 2012, DOI 10. 5772/45940.

DOI: 10.5772/45940

Google Scholar

[18] V.P. Bagmutov, A.A. Belov, A.S. Stoljarchuk, Jelementy raschetov na ustojchivost'. Ucheb. Posobie. V. P. Bagmutov, A. A. Belov, A. S. Stoljarchuk. – Volgograd: IUNL VolgGTU, 2010, 56 p. (Russian).

Google Scholar

[19] V.V. Lalin, Razlichnye formy uravnenij nelinejnoj dinamiki uprugih sterzhnej. Trudy SPbGTU, 2004, No. 489, pp.121-128, (Russian).

Google Scholar

[20] V.V. Lalin, D.A. Kushova, Geometricheski nelinejnoe deformirovanie i ustojchivost' ploskih uprugih sterzhnej s uchetom zhestkostej na rastjazhenie-szhatie, sdvig i izgib. International Journal for Computational Civil and Structural Engineering, 9 4 (2013).

Google Scholar

[21] I.M. Gelfand, S.V. Fomin, Variacionnoe ischislenie. M.: GIFML, 1961, 228 p. (Russian).

Google Scholar

[22] V.V. Lalin, L.A. Rozin, D.A. Kushova, Variacionnaja postanovka ploskoj zadachi geometricheski nelinejnogo deformirovanija i ustijchivosti uprugih sterzhnej. Inzhenerno – stroitelnyj zhurnal, 36 1 (2013) 87-96, (Russian).

Google Scholar

[23] A.V. Perelmuter, V.I. Slivker, Ustojchivost' ravnovesija i rodstvennye problem. Vol. 1, Мoscow, SKAD SOFT, 2010, 647 p. (Russian).

Google Scholar