[1]
D.P. Goloskokov, P.А. Zhilin, Obshaja nelinejnaja teorija uprugih sterzhnej s prilozheniem k opisaniju jeffekta Pojntinga, Deposited VINITI No. 1912-V87, Dep., 20 p. (Russian).
Google Scholar
[2]
V.V. Eliseev, Mehanika uprugih sterzhnej, Saint-Petersburg, SPbSPU, 1994, 88 p. (Russian).
Google Scholar
[3]
P.A. Zhilin, A.D. Sergeev, Ravnovesie i ustojchivost' tonkogo sterzhnja, nagruzhennogo konservativnym momentum. Mehanika i processy upravlenija, Trudy SPbSPU, 1994, No. 448, pp.47-56. (Russian).
Google Scholar
[4]
P.A. Zhilin, A.D. Sergeev, T.P. Tovstik, Nelinejnaja teorija sterzhnej i ee prilozhenija, Trudy XXIV letnej shkoly: Analiz i sintez nelinejnyh mehanicheskih kolebatel'nyh sistem, Sankt-Peterburg, 1997, p.313 – 337 (Russian).
Google Scholar
[5]
P.A. Zhilin, Prikladnaja mehanika, Teorija tonkih uprugih sterzhnej, SPb, Izd-vo SPbSPU, 2007, 102 p. (Russian).
Google Scholar
[6]
V.V. Eliseev, T.V. Zinoveva, Mehanika tonkostennyh konstrukcij, Teorija sterzhnej, SPb, Izd-vo SPbSPU, 2008, 96 p. (Russian).
Google Scholar
[7]
G. Jelenic, M.A. Crisfield, Geometrically exact 3D beam theory: implementation of a strain-invariant finite element for static and dynamics. Comp. Meths. Appl. Mech. Engng, 1999, No. 171, pp.141-171.
DOI: 10.1016/s0045-7825(98)00249-7
Google Scholar
[8]
A. A. Shabana and R.Y. Yakoub, Three dimensional absolute nodal coordinate formulation for beam elements theory. ASME Journal of Mechanical Design, 123 4 (2001) 606–613.
DOI: 10.1115/1.1410100
Google Scholar
[9]
J. N. Reddy, An Introduction to Nonlinear Finite Element Analysis. Oxford University Press, 2004, 482 p.
Google Scholar
[10]
S.S. Antman, Nonlinear problems of elasticity, Springer, Berlin Heidelberg New York, 2005, 835 p.
Google Scholar
[11]
J. Gerstmayr, A.A. Shabana, Analysis of thin beams and cables using the absolute nodal coordinate formulation. Nonlinear Dyn. 45 1-2 (2006) 109-130.
DOI: 10.1007/s11071-006-1856-1
Google Scholar
[12]
A.A. Shabana, Computational continuum mechanics. Cambridge University Press, 2008, 349 p.
Google Scholar
[13]
P. Wriggers, Nonlinear finite element methods. Springer-Verlag Berlin Heidelberg, 2008, 566 p.
Google Scholar
[14]
S. Krenk, Non-linear modelling and analysis of solids and structures. Cambridge University Press, 2009, 361 р.
Google Scholar
[15]
А. Ibrahimbegovic, Nonlinear Solid Mechanics. Springer Science+Business Media B.V. 2009, 585 p.
Google Scholar
[16]
D. Bigoni, Nonlinear solid mechanics: bifurcation theory and material instability. Cambridge University Press, 2012, 550p.
Google Scholar
[17]
S. Coskun, B. Öztürk, Elastic Stability Analysis of Euler Columns Using Analytical Approximate Techniques, Advances in Computational Stability Analysis, Dr. Safa Bozkurt Coşkun (Ed. ), 2012, DOI 10. 5772/45940.
DOI: 10.5772/45940
Google Scholar
[18]
V.P. Bagmutov, A.A. Belov, A.S. Stoljarchuk, Jelementy raschetov na ustojchivost'. Ucheb. Posobie. V. P. Bagmutov, A. A. Belov, A. S. Stoljarchuk. – Volgograd: IUNL VolgGTU, 2010, 56 p. (Russian).
Google Scholar
[19]
V.V. Lalin, Razlichnye formy uravnenij nelinejnoj dinamiki uprugih sterzhnej. Trudy SPbGTU, 2004, No. 489, pp.121-128, (Russian).
Google Scholar
[20]
V.V. Lalin, D.A. Kushova, Geometricheski nelinejnoe deformirovanie i ustojchivost' ploskih uprugih sterzhnej s uchetom zhestkostej na rastjazhenie-szhatie, sdvig i izgib. International Journal for Computational Civil and Structural Engineering, 9 4 (2013).
Google Scholar
[21]
I.M. Gelfand, S.V. Fomin, Variacionnoe ischislenie. M.: GIFML, 1961, 228 p. (Russian).
Google Scholar
[22]
V.V. Lalin, L.A. Rozin, D.A. Kushova, Variacionnaja postanovka ploskoj zadachi geometricheski nelinejnogo deformirovanija i ustijchivosti uprugih sterzhnej. Inzhenerno – stroitelnyj zhurnal, 36 1 (2013) 87-96, (Russian).
Google Scholar
[23]
A.V. Perelmuter, V.I. Slivker, Ustojchivost' ravnovesija i rodstvennye problem. Vol. 1, Мoscow, SKAD SOFT, 2010, 647 p. (Russian).
Google Scholar