Fatigue Damage Accumulation under the Complex Varying Loading

Article Preview

Abstract:

Fatigue analysis of steel parts of structures, which are subjected to complex irregular loading programs caused by wind, thermal, wave loads, earthquakes and combined imposed actions, requires in some cases using special methods of stress-strain evaluation. The model of the low cycle fatigue nonlinear damage accumulation is developed with taking into account the history of the deformation process. The damage is defined on the base of considering the quasi-static accumulation of maximal strain (stress) and hysteresis loops. The identification of material constants of the model is discussed. Application of the damage model for fatigue analysis of the antennas, pipelines, basements and fasteners units is considered and a comparison with experiments is given.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

187-192

Citation:

Online since:

August 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] B.E. Melnikov, A.S. Semenov, Strategy of multimodel analysis of elastic-plastic stress-strain state, Berlin Proc. of 6 th Int. Conf. on Comp. Civil and Build. Eng. -Berlin. (1995) 1073-1079.

Google Scholar

[2] B.E. Melnikov, A.S. Semenov, Creation and application of hierarchical sequence of material models for numerical analysis of elasto-plastic structures, ZAMM Zeitschrift fur Angewandte Mathematik und Mechanik. 76 (1996) 615-616.

Google Scholar

[3] S. Suresh, Fatigue of Materials, Second Edition, Cambridge University Press, (1998).

Google Scholar

[4] J. Schijve, Fatigue of Structures and Materials, 2nd Edition, Springer, (2009).

Google Scholar

[5] S.S. Manson, G.R. Halford, Fatigue and durability of structural materials, ASM Int., (2006).

Google Scholar

[6] P.A. Pavlov, Foundations of engineering computation the mechanisms parts on fatigue longevity strength, Mashinostroenie, 1988 (in Russian).

Google Scholar

[7] A.S. Semenov, B.E. Melnikov, M. Yu. Gorokhov, V. Ulbricht, Prevention of cyclic instability at the modeling of elasto-plastic deformation at large strains under proportional and non-proportional loading, Proc. of SPIE, 6597 (2007) 659-710.

DOI: 10.1117/12.726764

Google Scholar

[8] I.N. Izotov, N.P. Kuznetsov, B.E. Melnikov, A.G. Mityukov, A.Y. Musienko, A.S. Semenov, Modification of the multisurface theory of plasticity with one surface. Comparison with experimental data, Proc. of SPIE, 4348 (2001) 390-397.

DOI: 10.1117/12.417679

Google Scholar

[9] V.T. Troschenko, V.V. Pokrovsky, A.V. Prokopenko, Metal slopes under cyclic loading, Kiev: Nauk. dumka, 1987 (in Russian).

Google Scholar

[10] R.E. Peterson, Application of stress concentration factors in design, Proc. Society Expirim, Stress Analysis. 1 (1943) 120-129.

Google Scholar

[11] O'Donnel, Pordy. Fatigue strength of units with cracks, 2 (1964) 147-159.

Google Scholar

[12] P.A. Fomichev, J. Polak, Method of calculating the endurance of specimens with a stress raiser. Strength of Materials, 9 (1989) 100-103.

DOI: 10.1007/bf01529306

Google Scholar

[13] A. Semenov, S. Semenov, A. Nazarenko, L. Getsov, Computer simulation of fatigue, creep and thermal-fatigue cracks propagation in gas-turbine blades, Materiali in Tehnologije, 46 (2012) 197-203.

DOI: 10.1007/s11223-015-9657-8

Google Scholar

[14] J. Lemaitre, R. Desmorat, Engineering damage mechanics: ductile, creep, fatigue and brittle failures, (2005).

DOI: 10.1002/zamm.200590044

Google Scholar

[15] A.S. Semenov, S. Saehn, B.E. Melnikov, Computer simulation of kinked fatigue crack propagation at sharp notches, Proc. of SPIE, 3687 (1999) 427-436.

DOI: 10.1117/12.347466

Google Scholar

[16] A. Sprince, G. Fischer, L. Pakrastinsh, A. Korjakins, Crack propagation in concrete with silica particles. Advanced Materials Research, 842 (2014) 470-476.

DOI: 10.4028/www.scientific.net/amr.842.470

Google Scholar

[17] A. Sprince, A. Korjakins, L. Pakrastinsh, Time-dependent behavior of high performance fiber-reinforced concrete. Advanced Materials Research, 705 (2013) 75-80.

DOI: 10.4028/www.scientific.net/amr.705.75

Google Scholar

[18] O.N. Popova, T.L. Simankina, The service life estimation method for the structural elements of residential buildings, Magazine of Civil Engineering, 7 (2013) 40-42.

DOI: 10.5862/mce.42.6

Google Scholar