Salt Spray Corrosion Performance Associated with the Glass Forming Ability of the FeCo-Based Bulk Metallic Glasses

Article Preview

Abstract:

For the bulk amorphous Fe24+xCo24-xCr15Mo14C15B6Y2(X=0, 2, 4, 6 and 17) alloy, the corresponding corrosion properties associated with glass forming ability (GFA) have been carried out. Neutral salt spray corrosion test results show that the Fe28Co20Cr15Mo14C15B6Y2 alloy has the minimum corrosion rate, followed by Fe26Co22Cr15Mo14C15B6Y2, Fe24Co24Cr15Mo14C15B6Y2, Fe30Co18Cr15Mo14C15B6Y2, Fe41Co7Cr15Mo14C15B6Y2 and Ti6Al4V alloys. Specifically, the Fe28Co20Cr15Mo14C15B6Y2 alloy with the highest GFA also has the best corrosion resistance. With the increasing of Co addition, the corrosion resistance of the FeCo-based bulk metallic glasses is first increases and then decreases, which has the same trend of GFA with the change of Co elements. Furthermore, corrosion morphology are different for FeCo-based BMGs with different Co content.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

109-113

Citation:

Online since:

August 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] P.F. Gostin, S. Oswald, L. Schultz, A. Gebert, Acid corrosion process of Fe-based bulk metallic glass, Corrosion Science. 62 (2012) 112-121.

DOI: 10.1016/j.corsci.2012.05.004

Google Scholar

[2] Q.J. Chen, H.B. Fan, L. Ye, S. Ringer, J.F. Sun, J. Shen, D.G. McCartney. Enhanced glass forming ability of Fe-Co-Zr-Mo-W-B alloys with Ni addition. Materials Science and Engineering A. 402 (2005) 188-192.

DOI: 10.1016/j.msea.2005.04.046

Google Scholar

[3] J. Shen, Q.J. Chen, J.F. Sun.Exceptionally high glass-forming ability of an FeCoCrMoCBY alloy. Applied Physics Letters, 86 (2005) 151907-151909.

DOI: 10.1063/1.1897426

Google Scholar

[4] T. Aycan Baser, M. Baricco. Fe-based bulk metallic glasses with Y addition. Journal of Alloys and Compounds. 434-435 (2007) 176-179.

DOI: 10.1016/j.jallcom.2006.08.190

Google Scholar

[5] S.L. Wang, H.X. Li, X.F. Zhang, S. Yi. Effects of Cr contents in Fe-based bulk metallic glasses on the glass forming ability and the corrosion resistance. Materials Chemistry and Physics. 113 (2009) 878-883.

DOI: 10.1016/j.matchemphys.2008.08.057

Google Scholar

[6] A. Pardo, M.C. Merina, E. Otero. Influence of Cr additions on corrosion resistance of Fe- and Co-based metallic glasses and nanocrystals in H2SO4. Journal of Non-Crystalline Solids. 352 (2006) 3179-3190.

DOI: 10.1016/j.jnoncrysol.2006.05.021

Google Scholar

[7] K. Asami, K. Kawashima, K. Hashimoto. Chemical properties and applications of some amorphous alloys. Materials Science and Engineering. 99 (1988) 475-481.

DOI: 10.1016/0025-5416(88)90380-1

Google Scholar

[8] E. Akiyama, A. Kawashima, K. Asani, K. Hashimoto. The corrosion behavior of sputter-deposited amorphous Al Cr Mo alloys in 1 M HCl. Corrosion Science. 38 (1996) 279–292.

DOI: 10.1016/0010-938x(96)00119-9

Google Scholar

[9] M.W. Tan, E. Akiyama, H. Habazaki, A. Kawashima, K. Asami, K. Hashimoto. The role of chromium and molybdenum in passivation of amorphous Fe-Cr-Mo-P-C alloys in deaerated 1 M HCl. Corrosion Science. 38 (1996) 2137-2151.

DOI: 10.1016/s0010-938x(96)00071-6

Google Scholar

[10] J. Jayaraj, K.B. Kim, H.S. Ahn, E. Fleury. Corrosion mechanism of N-containing Fe-Cr-Mo-Y-C-B bulk amorphous alloys in highly concentrated HCl solution. Materials Science and Engineering A. 449-451 (2007) 517-520.

DOI: 10.1016/j.msea.2006.02.418

Google Scholar

[11] Q.J. Chen, J.L. Liu, X.L. Zhou, J. Shen, X.Z. Hua. Effects of high Co contents in Fe-Cr-Mo-C-B-Y alloy on the glass forming and the mechanical properties. Advanced Materials Research Vols. 652-654 (2013) 1054-1058.

DOI: 10.4028/www.scientific.net/amr.652-654.1054

Google Scholar

[12] Y.B. Wang, H.F. Li, Y.F. Zheng, M. Li. Corrosion performances in simulated body fluids and cytotoxicity evaluation of Fe-based bulk metallic glasses. Materials Science and Engineering C. 32 (2012) 599-606.

DOI: 10.1016/j.msec.2011.12.018

Google Scholar

[13] R.M. Fernández-Domene, E. Blasco-Tamarit, D.M. García-García, J. García Antón. Passive and transpassive behaviour of Alloy 31 in a heavy brine LiBr solution. Electrochimica Acta. 95 (2013) 1-11.

DOI: 10.1016/j.electacta.2013.02.024

Google Scholar

[14] W.J. Botta, J.E. Berger, C.S. Kiminami, V. Roche, R.P. Nogueira, C. Bolfarini. Corrosion resistance of Fe-based amorphous alloys. Journal of Alloys and Compounds. 586 (2014) S105-S110.

DOI: 10.1016/j.jallcom.2012.12.130

Google Scholar

[15] B.M. Wei. Corrosion theory and application. Beijing, 1984: 124-126.

Google Scholar

[16] D.W. Xing, J.F. Sun, J. Shen, G. Wang, M. Yan. The relations between ΔTx and the glass forming ability of bulk amorphous Zr–Cu–Ni–Al–Hf–Ti and Zr52. 5Cu17. 9Ni14. 6Al10Ti5 alloys. Journal of Alloys and Compounds. 375 (2004) 239-242.

DOI: 10.1016/j.jallcom.2003.11.155

Google Scholar