Glial Cells Missing Gene Upregulated by Ecdysone in Drosophila

Article Preview

Abstract:

The Drosophila glial cells missing (gcm) gene is not only essential for generating embryonic glial differentiation but also necessary and sufficient for generating glial cells during the postembryonic stage. However, the mechanisms of how the gcm gene is mediated are still elusive. This study reveals that gcm was expressed with fluctuating variation during the third instar larval and pupal stage, the 20-hydroxyecdysone (20E) treatment can upregulate gcm expression, the knockdown of EcR-A and USP1 led to a reduced transcript level of gcm in S2 cells. These results suggest that the 20E signaling pathway can mediate gcm expression through the 20E receptor EcR-A and its heterodimer USP1.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

273-277

Citation:

Online since:

August 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Gilmour, D.T., H.M. Maischein, and C. Nusslein-Volhard, Migration and function of a glial subtype in the vertebrate peripheral nervous system. Neuron, 2002. 34(4): pp.577-88.

DOI: 10.1016/s0896-6273(02)00683-9

Google Scholar

[2] Nave, K.A. and B.D. Trapp, Axon-glial signaling and the glial support of axon function. Annu Rev Neurosci, 2008. 31: pp.535-61.

DOI: 10.1146/annurev.neuro.30.051606.094309

Google Scholar

[3] Viktorin, G., et al., Multipotent neural stem cells generate glial cells of the central complex through transit amplifying intermediate progenitors in Drosophila brain development. Dev Biol, 2011. 356(2): pp.553-65.

DOI: 10.1016/j.ydbio.2011.06.013

Google Scholar

[4] Hosoya, T., et al., glial cells missing: a binary switch between neuronal and glial determination in Drosophila. Cell, 1995. 82(6): pp.1025-36.

DOI: 10.1016/0092-8674(95)90281-3

Google Scholar

[5] Laneve, P., et al., The Gcm/Glide molecular and cellular pathway: new actors and new lineages. Dev Biol, 2013. 375(1): pp.65-78.

DOI: 10.1016/j.ydbio.2012.12.014

Google Scholar

[6] Lee, B.P. and B.W. Jones, Transcriptional regulation of the Drosophila glial gene repo. Mech Dev, 2005. 122(6): pp.849-62.

Google Scholar

[7] Moore, D.J., et al., GPR105, a novel Gi/o-coupled UDP-glucose receptor expressed on brain glia and peripheral immune cells is regulated by immunologic challenge: possible role in neuroimmune function. Brain Res Mol Brain Res, 2003. 118(1-2): pp.10-23.

DOI: 10.1016/s0169-328x(03)00330-9

Google Scholar

[8] Zhou, R., X. Wu, and O. Skalli, TGF-alpha induces a stationary, radial-glia like phenotype in cultured astrocytes. Brain Res Bull, 2001. 56(1): pp.37-42.

DOI: 10.1016/s0361-9230(01)00591-3

Google Scholar

[9] Pereanu, W., D. Shy, and V. Hartenstein, Morphogenesis and proliferation of the larval brain glia in Drosophila. Dev Biol, 2005. 283(1): pp.191-203.

DOI: 10.1016/j.ydbio.2005.04.024

Google Scholar

[10] Mao, H., Z. Lv, and M.S. Ho, Gcm proteins function in the developing nervous system. Dev Biol, 2012. 370(1): pp.63-70.

DOI: 10.1016/j.ydbio.2012.07.018

Google Scholar

[11] Riddiford, L.M., et al., Insights into the molecular basis of the hormonal control of molting and metamorphosis from Manduca sexta and Drosophila melanogaster. Insect Biochem Mol Biol, 2003. 33(12): pp.1327-38.

DOI: 10.1016/j.ibmb.2003.06.001

Google Scholar

[12] Song, Q., et al., An immunophilin is a component of the insect ecdysone receptor (EcR) complex. Insect Biochem Mol Biol, 1997. 27(11): pp.973-82.

DOI: 10.1016/s0965-1748(97)00080-5

Google Scholar

[13] Schubiger, M., et al., Isoform specific control of gene activity in vivo by the Drosophila ecdysone receptor. Mech Dev, 2003. 120(8): pp.909-18.

DOI: 10.1016/s0925-4773(03)00134-5

Google Scholar

[14] Sui, Y.P., et al., Characterization and influences of classical insect hormones on the expression profiles of a molting carboxypeptidase A from the cotton bollworm (Helicoverpa armigera). Insect Mol Biol, 2009. 18(3): pp.353-63.

DOI: 10.1111/j.1365-2583.2009.00879.x

Google Scholar

[15] Nakahara, Y., et al., In vitro studies of hematopoiesis in the silkworm: cell proliferation in and hemocyte discharge from the hematopoietic organ. J Insect Physiol, 2003. 49(10): pp.907-16.

DOI: 10.1016/s0022-1910(03)00149-5

Google Scholar

[16] Soustelle, L., et al., Control of gcm RNA stability is necessary for proper glial cell fate acquisition. Mol Cell Neurosci, 2008. 37(4): pp.657-62.

DOI: 10.1016/j.mcn.2007.11.007

Google Scholar

[17] Ho, M.S., et al., Gcm protein degradation suppresses proliferation of glial progenitors. Proc Natl Acad Sci USA, 2009. 106(16): pp.6778-83.

DOI: 10.1073/pnas.0808899106

Google Scholar