Study on Kinetics of Straw Stalk Gasification in CO2 with Random Pore Model

Article Preview

Abstract:

The gasification of straw stalk in CO2 environment was studied by isothermal thermogravimetric analysis. The characteristics of rice straw and maize stalk gasification at different temperatures were examined under CO2 atmosphere. The relationship between reaction time and carbon conversion of two biomass chars was analyzed by the random pore model (RPM), and compared with the simulation of the shrinking core reaction model (SCRM). The results show that the random pore model is better to predict the experimental data at different temperatures. This means that the characteristics of pore structure for the influence of biomass chars gasification is well reflected by parameter ψ used in RPM. It indicates that the RPM can be applied to the comprehensive simulation of biomass chars gasification in CO2 environment.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

316-320

Citation:

Online since:

August 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] E. Cetin, B. Moghtaderi, R. Gupta, T.F. Wall, Influence of pyrolysis conditions on the structure and gasification reactivity of biomass chars, Fuel 83 (2004) 2139-2150.

DOI: 10.1016/j.fuel.2004.05.008

Google Scholar

[2] L. Lu, C. Kong, V. Sahajwalla, D. Harris, Char structural ordering during pyrolysis and combustion and its influence on char reactivity, Fuel 81 (2002) 1215-1225.

DOI: 10.1016/s0016-2361(02)00035-2

Google Scholar

[3] H. Luik, I. Johannes, V. Palu, L. Luik, K. Kruusement, Transformations of biomass internal oxygen at varied pyrolysis conditions, J. Anal. Appl. Pyrolysis 79 (2007) 121-127.

DOI: 10.1016/j.jaap.2006.12.028

Google Scholar

[4] S. Fujimoto, T. Yoshida, T. Hanaoka, Y. Matsumura, S.Y. Lin, T. Minowa, Y. Sasaki, A kinetic study of in situ CO2 removal gasification of woody biomass for hydrogen production, Bioresour. Technol. 83 (2007) 37-46.

DOI: 10.1016/j.biombioe.2007.01.025

Google Scholar

[5] C.H. Buttermain, M.J. Castaldi, Influence of CO2 injection on biomass Gasification, Ind. Eng. Chem. Res. 46 (2007), 8875-8886.

DOI: 10.1021/ie071160n

Google Scholar

[6] C. Branca, C.D. Blasi, Combustion Kinetics of Secondary Biomass Chars in the Kinetic Regime, Energy Fuels 24 (2010) 5741-5750.

DOI: 10.1021/ef100952x

Google Scholar

[7] J.B. Parra, J.C. De Sousa, J.J. Pis, J.A. Pajares, R.C. Bansal, Effect of gasification on the porous characteristics of activated carbons from a semianthracite, Carbon 33 (1995) 801-807.

DOI: 10.1016/0008-6223(95)00004-w

Google Scholar

[8] M. Guerrero, M.P. Ruiz, A. Millera, M.U. Alzueta, R. Bilbao, Characterization of Biomass Chars Formed under Different Devolatilization Conditions: Differences between Rice Husk and Eucalyptus, Energy Fuels 22 (2008) 1275-1284.

DOI: 10.1021/ef7005589

Google Scholar

[9] C. Fushimi, K. Araki, Y. Yamaguchi, A. Tsutsumi, Effect of heating rate on steam gasification of biomass 2. Thermogravimetric-mass spectrometric (TG-MS) analysis of gas evolution, Ind. Eng. Chem. Res. 42 (2003) 3929-3936.

DOI: 10.1021/ie0300575

Google Scholar

[10] G. Brem, J.J.H. Brouwers, Analytical solutions for non-linear conversion of a porous solid particle in a gas—I: isothermal conversion, Chem. Eng. Sci. 45 (1990) 1905-(1913).

DOI: 10.1016/0009-2509(90)87066-2

Google Scholar

[11] J.S. Andrade, J.Y. Shibusa, Y. Arai, C. McGreavy, A network model for diffusion and adsorption in compacted pellets of bidisperse grains, Chem. Eng. Sci. 50 (1995) 1943-(1951).

DOI: 10.1016/0009-2509(95)00060-i

Google Scholar

[12] T.W. Kwon, S.D. Kim, P.C. Fung, Reaction kinetics of char-CO2 gasification, Fuel 67 (1988) 530-535.

DOI: 10.1016/0016-2361(88)90350-x

Google Scholar

[13] O. Garza-Garza, M.P. Dudukovic, A variable size grain model for gas-solid reactions with structural changes, Chem. Eng. J. 24 (1982) 35-45.

DOI: 10.1016/0300-9467(82)80048-8

Google Scholar

[14] M.A. Hastaoglu, M.S. Hassam, A gas–solid reaction model: variable temperature, pressure and structural parameters, Can. J. Chem. Eng. 66 (1988) 419-427.

DOI: 10.1002/cjce.5450660311

Google Scholar

[15] S.K. Bhatia, D.D. Perlmutter, A random pore model for fluid-solid reactions: I. Isothermal, kinetic control, AIChE J. 26 (1980) 379-386.

DOI: 10.1002/aic.690260308

Google Scholar

[16] G.R. Gavalas, A random capillary model with application to char gasification at chemically controlled rates, AIChE J. 26 (1980) 577-585.

DOI: 10.1002/aic.690260408

Google Scholar

[17] K. Miura, M. Aimi, J. Naito, K. Hashimoto, Steam gasification of carbon effect of several metals on the rate of gasification and the rates of CO and CO2 formation, Fuel 65 (1986) 407-411.

DOI: 10.1016/0016-2361(86)90304-2

Google Scholar

[18] M. Schmal, J.L.M. Monteiro, J.L. Castellan, Kinetics of coal gasification, Ind. Eng. Chem. Process. Des. Dev. 21 (1982) 256-266.

DOI: 10.1021/i200017a008

Google Scholar