[1]
E. Cetin, B. Moghtaderi, R. Gupta, T.F. Wall, Influence of pyrolysis conditions on the structure and gasification reactivity of biomass chars, Fuel 83 (2004) 2139-2150.
DOI: 10.1016/j.fuel.2004.05.008
Google Scholar
[2]
L. Lu, C. Kong, V. Sahajwalla, D. Harris, Char structural ordering during pyrolysis and combustion and its influence on char reactivity, Fuel 81 (2002) 1215-1225.
DOI: 10.1016/s0016-2361(02)00035-2
Google Scholar
[3]
H. Luik, I. Johannes, V. Palu, L. Luik, K. Kruusement, Transformations of biomass internal oxygen at varied pyrolysis conditions, J. Anal. Appl. Pyrolysis 79 (2007) 121-127.
DOI: 10.1016/j.jaap.2006.12.028
Google Scholar
[4]
S. Fujimoto, T. Yoshida, T. Hanaoka, Y. Matsumura, S.Y. Lin, T. Minowa, Y. Sasaki, A kinetic study of in situ CO2 removal gasification of woody biomass for hydrogen production, Bioresour. Technol. 83 (2007) 37-46.
DOI: 10.1016/j.biombioe.2007.01.025
Google Scholar
[5]
C.H. Buttermain, M.J. Castaldi, Influence of CO2 injection on biomass Gasification, Ind. Eng. Chem. Res. 46 (2007), 8875-8886.
DOI: 10.1021/ie071160n
Google Scholar
[6]
C. Branca, C.D. Blasi, Combustion Kinetics of Secondary Biomass Chars in the Kinetic Regime, Energy Fuels 24 (2010) 5741-5750.
DOI: 10.1021/ef100952x
Google Scholar
[7]
J.B. Parra, J.C. De Sousa, J.J. Pis, J.A. Pajares, R.C. Bansal, Effect of gasification on the porous characteristics of activated carbons from a semianthracite, Carbon 33 (1995) 801-807.
DOI: 10.1016/0008-6223(95)00004-w
Google Scholar
[8]
M. Guerrero, M.P. Ruiz, A. Millera, M.U. Alzueta, R. Bilbao, Characterization of Biomass Chars Formed under Different Devolatilization Conditions: Differences between Rice Husk and Eucalyptus, Energy Fuels 22 (2008) 1275-1284.
DOI: 10.1021/ef7005589
Google Scholar
[9]
C. Fushimi, K. Araki, Y. Yamaguchi, A. Tsutsumi, Effect of heating rate on steam gasification of biomass 2. Thermogravimetric-mass spectrometric (TG-MS) analysis of gas evolution, Ind. Eng. Chem. Res. 42 (2003) 3929-3936.
DOI: 10.1021/ie0300575
Google Scholar
[10]
G. Brem, J.J.H. Brouwers, Analytical solutions for non-linear conversion of a porous solid particle in a gas—I: isothermal conversion, Chem. Eng. Sci. 45 (1990) 1905-(1913).
DOI: 10.1016/0009-2509(90)87066-2
Google Scholar
[11]
J.S. Andrade, J.Y. Shibusa, Y. Arai, C. McGreavy, A network model for diffusion and adsorption in compacted pellets of bidisperse grains, Chem. Eng. Sci. 50 (1995) 1943-(1951).
DOI: 10.1016/0009-2509(95)00060-i
Google Scholar
[12]
T.W. Kwon, S.D. Kim, P.C. Fung, Reaction kinetics of char-CO2 gasification, Fuel 67 (1988) 530-535.
DOI: 10.1016/0016-2361(88)90350-x
Google Scholar
[13]
O. Garza-Garza, M.P. Dudukovic, A variable size grain model for gas-solid reactions with structural changes, Chem. Eng. J. 24 (1982) 35-45.
DOI: 10.1016/0300-9467(82)80048-8
Google Scholar
[14]
M.A. Hastaoglu, M.S. Hassam, A gas–solid reaction model: variable temperature, pressure and structural parameters, Can. J. Chem. Eng. 66 (1988) 419-427.
DOI: 10.1002/cjce.5450660311
Google Scholar
[15]
S.K. Bhatia, D.D. Perlmutter, A random pore model for fluid-solid reactions: I. Isothermal, kinetic control, AIChE J. 26 (1980) 379-386.
DOI: 10.1002/aic.690260308
Google Scholar
[16]
G.R. Gavalas, A random capillary model with application to char gasification at chemically controlled rates, AIChE J. 26 (1980) 577-585.
DOI: 10.1002/aic.690260408
Google Scholar
[17]
K. Miura, M. Aimi, J. Naito, K. Hashimoto, Steam gasification of carbon effect of several metals on the rate of gasification and the rates of CO and CO2 formation, Fuel 65 (1986) 407-411.
DOI: 10.1016/0016-2361(86)90304-2
Google Scholar
[18]
M. Schmal, J.L.M. Monteiro, J.L. Castellan, Kinetics of coal gasification, Ind. Eng. Chem. Process. Des. Dev. 21 (1982) 256-266.
DOI: 10.1021/i200017a008
Google Scholar