In Vivo Antioxidant Activity of Black Soybean Peptide in Aging Mice Caused by D-Galactose

Article Preview

Abstract:

Black soybean peptides (BSPs) with potent antioxidant activity were purified from black soybean protein hydrolysates (BSH) by using the ultrafiltration (UF) and macroporous adsorption resin (MAR), and in vivo antioxidant activity of the fraction BSP-DA-c was evaluated in aging mice induced by D-galactose. The results showed that orally administration of BSP-DA-c fraction at the dose of 500 and 1000 mg/kg per day could remarkably increase (P<0.05) the activity of SOD and GSH-Px in liver and the activity of GSH-Px in serum, the contents of MDA in serum and liver were reduced significantly (P<0.05), inferred that BSP-DA-c had strong antioxidant activity in mice.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

421-425

Citation:

Online since:

August 2014

Keywords:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Astadi, I. R., Astuti, M., Santoso, U., & Nugraheni, P. S. In vitro antioxidant activity of anthocyanins of black soybean seed coat in human low density lipoprotein (LDL). Food Chemistry, 112(3), 659-663. (2009).

DOI: 10.1016/j.foodchem.2008.06.034

Google Scholar

[2] Jian-min, C. O. N. G. Analysis of nutrition component in black soya bean. Science and Technology of Food Industry, 4, 085. (2008).

Google Scholar

[3] Liu, J.H., Huang, Y.S., Tian, Y.G., Nie, S.P., Xie, J.H., Wang, Y., & Xie, M.Y. Purification and identification of novel antioxidative peptide released from Black-bone silky fowl (Gallus gallus domesticus Brisson). European Food Research and Technology, 237: 253–263. (2013).

DOI: 10.1007/s00217-013-1987-9

Google Scholar

[4] Lee, S. J., Kim, Y. S., Kim, S. E., Kim, E. K., Hwang, J. W., Park, T. K., .. & Park, P. J. Purification and Characterization of a Novel Angiotensin I-Converting Enzyme Inhibitory Peptide Derived from an Enzymatic Hydrolysate of Duck Skin Byproducts. Journal of Agricultural and Food Chemistry, 60(40), 10035-10040. (2012).

DOI: 10.1021/jf3023172

Google Scholar

[5] Kannan, A., Hettiarachchy, N., & Narayan, S. Colon and breast anti-cancer effects of peptide hydrolysates derived from rice bran. The Open Bioactive Coumpounds Journal, 2(2), 17-20. (2009).

DOI: 10.2174/1874847300902010017

Google Scholar

[6] Hull J.N., Kannan, A., & Hettiarachchy, N.S. Antioxidant and antihypertensive activities of rice bran peptides. Discovery Student J. Dale Bumpers College Agric. Food Life Sci., 11, 52-57. (2011).

Google Scholar

[7] Rizzo, A. M., Berselli, P., Zava, S., Montorfano, G., Negroni, M., Corsetto, P., & Berra, B. Endogenous antioxidants and radical scavengers. InBio-Farms for Nutraceuticals (pp.52-67). Springer US. (2010).

DOI: 10.1007/978-1-4419-7347-4_5

Google Scholar

[8] Kim, S. Y., Je, J. Y., & Kim, S. K. Purification and characterization of antioxidant peptide from hoki (Johnius belengerii) frame protein by gastrointestinal digestion. The Journal of Nutritional Biochemistry, 18(1), 31-38. (2007).

DOI: 10.1016/j.jnutbio.2006.02.006

Google Scholar

[9] Valko, M., Leibfritz, D., Moncol, J., Cronin, M. T., Mazur, M., & Telser, J. Free radicals and antioxidants in normal physiological functions and human disease. The International Journal of Biochemistry & Cell Biology, 39(1), 44-84. (2007).

DOI: 10.1016/j.biocel.2006.07.001

Google Scholar

[10] Kim, S. K., & Wijesekara, I. Development and biological activities of marine-derived bioactive peptides: a review. Journal of Functional Foods, 2(1), 1-9. (2010).

DOI: 10.1016/j.jff.2010.01.003

Google Scholar

[11] Liu, E.,Q., He, J. P., Chen, Z.J., Liu, H.P., & Li, Y.E. Antioxidation activity In vitro of enzymic hydrolysates from black soybean. Journal of Chinese Cereals and Oils Association, 24(11): 38-41. (2009).

Google Scholar

[12] Zhao, X.H., & Fong, Z.B. A study on the determination of the degree of hydrolysis in soy protein hydrolysates. Journal of Northeast Agricultural University, 26, 178-181. (1995).

Google Scholar

[13] Li, H., Liu, E.Q., Tang, S. R., & Wu, Y. H. Enzymatic preparation, purification and amino acid composition of antioxidant peptides from black soybeans. Food Science, 34, 271-275. (2013).

Google Scholar

[14] Ohkawa, H., Ohishi, N., & Yagi, K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Analytical Biochemistry, 95(2), 351-358. (1979).

DOI: 10.1016/0003-2697(79)90738-3

Google Scholar

[15] Chen, H. M., Muramoto, K., Yamauchi, F., Fujimoto, K., & Nokihara, K. Antioxidative properties of histidine-containing peptides designed from peptide fragments found in the digests of a soybean protein. Journal of Agricultural and Food Chemistry, 46(1), 49-53. (1998).

DOI: 10.1021/jf970649w

Google Scholar

[16] Pihlanto-Leppälä, A. Bioactive peptides derived from bovine whey proteins: opioid and ace-inhibitory peptides. Trends in Food Science & Technology, 11(9), 347-356. (2000).

DOI: 10.1016/s0924-2244(01)00003-6

Google Scholar

[17] Wang, W., Mejia, D., & Gonzalez, E. A New Frontier in Soy Bioactive Peptides that May Prevent Age‐related Chronic Diseases. Comprehensive Reviews in Food Science and Food Safety, 4(4), 63-78. (2005).

DOI: 10.1111/j.1541-4337.2005.tb00075.x

Google Scholar

[18] Li, X. M., Ma, Y.L., & Liu, X.J. Effect of the Lycium barbarum polysaccharides on age-related oxidative stress in aged mice. Journal of Ethnopharmacology, 111, 504–511. (2007).

DOI: 10.1016/j.jep.2006.12.024

Google Scholar

[19] İnal, M. E., Kanbak, G., & Sunal, E. Antioxidant enzyme activities and malondialdehyde levels related to aging. Clinica Chimica Acta, 305(1), 75-80. (2001).

DOI: 10.1016/s0009-8981(00)00422-8

Google Scholar

[20] Ahn, H. S., Jeon, T. I., Lee, J. Y., Hwang, S. G., Lim, Y., & Park, D. K. Antioxidative activity of persimmon and grape seed extract: in vitro and in vivo. Nutrition Research, 22(11), 1265-1273. (2002).

DOI: 10.1016/s0271-5317(02)00429-3

Google Scholar