Porous Silicon as Functionalized Material for Biomedical Application

Article Preview

Abstract:

As a novel functional nanomaterial, porous silicon has many unique properties, such as its unique optical characteristics, biocompatibility, abundance, mechanical, electronic properties, silicon microelectronic compatibility, filtration, nanometer micropore controllable growth and large specific surface area, which enhance its prospect in the biological analysis, immune virus detection, environmental, food industry and so on, and has attracted world interests in the fields of materials science, biology, medicine, and electronics. In this work the application of porous silicon in the fields of biological and biomedical has been introduced with depth and width of researching on its.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

431-436

Citation:

Online since:

August 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Canham, Leigh T. Adv. Mater. 7(1995)1033-1037.

Google Scholar

[2] Sailor M J. John Wiley & Sons, (2012).

Google Scholar

[3] Ensafi Ali A, Mokhtari Abarghoui M, Rezaei B. Electrochim. Acta 123(2014)219-226.

Google Scholar

[4] Naderi N, Hashim M R, Amran T S T. Superlattice. Microst. 51(2012)626-634.

Google Scholar

[5] Dirk H, Vasani Roshan B, McInnes Steven J P, et al. ACS Macro Lett. 1(2012)919-921.

Google Scholar

[6] Kinnari J, Päivi, Hyvönen Maija L K, et al. Biomaterials 34(2013)9134-9141.

Google Scholar

[7] Kermad A, Sam S, Ghellai N, et al. Mater. Sci. Eng. B 178(2013)1159-1164.

Google Scholar

[8] Serda R E, Mack A, Pulikkathara M, et al. Small 6(2010)1329-1340.

Google Scholar

[9] Ge M, Rong J, Fang X, et al. Nano Res. 6(2013)174-181.

Google Scholar

[10] Pan X, Li Z, Wang T, et al. J. Fluoresc. 2(2014)1-8.

Google Scholar

[11] Liu D, Bimbo L M, Mäkilä E, et al. J. Control. Release170 (2013)268-278.

Google Scholar

[12] McInnes S J P, Szili E J, Al-Bataineh S A, et al. ACS Appl. Mater. Inter. 4(2012)3566-3574.

Google Scholar

[13] Sarparanta M P, Bimbo L M, Mäkilä E M, et al. Biomaterials 33(2012)3353-3362.

Google Scholar

[14] Jarvis K L, Barnes T J, Prestidge C A. Adv. Colloid. Interface. 175(2012)25-38.

Google Scholar

[15] Perrone Donnorso M, Miele E, De Angelis F, et al. Microelectron. Eng. 98(2012)626-629.

Google Scholar

[16] Kaasalainen M, Mäkilä E, Riikonen J, et al. Int. J. Pharmaceut. 431(2012)230-236.

Google Scholar

[17] Mirsky Y, Nahor A, Edrei E, et al. Appl. Phys. Lett. 103(2013)033702.

Google Scholar

[18] Lee S W, Kim S, Malm J, et al. Anal. Chim. Acta 796(2013)108-114.

Google Scholar

[19] Li B R, Chen C W, Yang W L, et al. Biosens. Bioelectron. 45(2013)252-259.

Google Scholar

[20] Sarparanta M P, Bimbo L M, Rytkönen J, et. al. Mol. Pharmaceut. 9(2012)654-663.

Google Scholar

[21] Rossi, Andrea M., et al. Biosens. Bioelectron. 23(2007)741-745.

Google Scholar

[22] Finny P. Mathew, Evangelyn C. Alocilja. Biosens. Bioelectron. 20(2005)1656-1661.

Google Scholar

[23] Savage D J, Liu X, Curley S A, et al. Current. Opin. Pharm. 13(2013)834-841.

Google Scholar

[24] Lisa M. Bonanno, Lisa A. DeLouise. Biosens. Bioelectron. 23(2007)444-448.

Google Scholar

[25] Singh S, Sharma S N, Shivaprasad S M, . J. Mater. Sci-Mater. M. 20(2009)181-187.

Google Scholar

[26] Charrier J, Pirasteh P, Boucher Y G, et al. Micro & Nano Lett. IET. 7(2012)105-108.

Google Scholar

[27] Sirajuddin M., Ali S., Badshah A. J. Photochem. Photobiol. B 124(2013)1-19.

Google Scholar

[28] Lepinay S, Staff A, Ianoul A, et al. Biosens. Bioelectron. 52(2014)337-344.

Google Scholar

[29] Pastor E, Matveeva E, Valle-Gallego A, et al. Colloid. Surface. B 88(2011)601-609.

Google Scholar

[30] Viter R, Starodub N, Smyntyna V, et al. Procedia Eng. 25(2011)948-951.

Google Scholar

[31] Lawrence B, Alagumanikumaran N, Prithivikumaran N, et al. Appl. Surf. Sci. 264(2013)767-771.

Google Scholar

[32] Kilpeläinen M, Mönkäre J, Vlasova M A, et al. Eur. J. Pharm. Biopharm. 77(2011)20-25.

Google Scholar

[33] Rong G., Najmaie A, Sipe J E, et al. Biosens. Bioelectron. 23(2008)1572-1576.

Google Scholar

[34] Huntley A L, Johnson R, Purdy S, et al. Ann. Fam. Med. 10(2012)134-141.

Google Scholar

[35] Arruebo M. Nanomed. Nanobiotechnol. 4(2012)16-30.

Google Scholar

[36] Gu L, Hall D J, Qin Z, et al. Nat. Commun. 4(2013)2326.

Google Scholar

[37] Freeman W, Sailor M J, Cheng L, et al. U.S. Patent Application 13/854, 039[P]. 2013-3-29.

Google Scholar

[38] Tanaka T, Godin B, Bhavane R, et al. Int. J. Pharmaceut., 402(2010)190-197.

Google Scholar

[39] Sweetman M J, Harding F J, Graney S D, et al. Appl. Surf. Sci. 257(2011)6768-6774.

Google Scholar

[40] Lowe R D, Szili E J, Kirkbride P, et al. Analyt. Chem. 82(2010)4201-4208.

Google Scholar

[41] Bonanno L M, Kwong T C, DeLouise L A. Analyt. Chem. 82(2010)9711-9718.

Google Scholar

[42] Vaccari L, Canton D, Zaffaroni N, et al. Microelectron. Eng. 83(2006)1598-1601.

Google Scholar

[43] McQuellon R P, Russell G B, Shen P, et al. Ann. Surg. Oncol. 15(2008)125-133.

Google Scholar

[44] Bimbo L M, Mäkilä E, Laaksonen T, et al. Biomaterials 32(2011)2625-2633.

Google Scholar

[45] Zhang M, Xu R, Xia X, et al. Biomaterials 35(2014)423-431.

Google Scholar

[46] Ressine A, Corin I, Järås K, et al. Electrophoresis28(2007)4407-4415.

Google Scholar

[47] Lee C, Hong C, Lee J, et al. Laser. Med. Sci. 27(2012)1001-1008.

Google Scholar