[1]
Sacks, J., et al., Design and Analysis of Computer Experiments. Statistical Science, 1989. 4(4): pp.409-423.
Google Scholar
[2]
Alam, F.M., K.R. McNaught, and T.J. Ringrose, A comparison of experimental designs in the development of a neural network simulation metamodel. SIMULATION MODELLING PRACTICE AND THEORY, 2004. 12(7-8): pp.559-578.
DOI: 10.1016/j.simpat.2003.10.006
Google Scholar
[3]
Simpson, T.W., et al., Metamodels for Computer-based Engineering Design: Survey and recommendations. EWC Engineering With Computers, 2001. 17(2): pp.129-150.
DOI: 10.1007/pl00007198
Google Scholar
[4]
Booker, A.J., et al., A rigorous framework for optimization of expensive functions by surrogates. STRUCTURAL OPTIMIZATION -BERLIN-, 1999. 17(1): pp.1-13.
DOI: 10.1007/bf01197708
Google Scholar
[5]
Kleijnen, J.P.C. and R.G. Sargent, A methodology for fitting and validating metamodels in simulation. European Journal of Operational Research European Journal of Operational Research, 2000. 120(1): pp.14-29.
DOI: 10.1016/s0377-2217(98)00392-0
Google Scholar
[6]
Jin, R., W. Chen, and T.W. Simpson, Comparative studies of metamodelling techniques under multiple modelling criteria. Structural and Multidisciplinary Optimization, 2001. 23(1): pp.1-13.
DOI: 10.1007/s00158-001-0160-4
Google Scholar
[7]
Fu, Z. and J. Mo, Springback prediction of high-strength sheet metal under air bending forming and tool design based on GABPNN. Int J Adv Manuf Technol The International Journal of Advanced Manufacturing Technology, 2011. 53(5-8): pp.473-483.
DOI: 10.1007/s00170-010-2846-5
Google Scholar
[8]
Garcia-Romeu, M.L. and J. Ciurana, Springback and Geometry Prediction - Neural Networks Applied to the Air Bending Process. Lecture notes in computer science., 2006(4113): pp.470-475.
DOI: 10.1007/11816157_58
Google Scholar
[9]
Inamdar, M., et al., Development of an Artificial Neural Network to Predict Springback in Air Vee Bending. The International Journal of Advanced Manufacturing Technology The International Journal of Advanced Manufacturing Technology, 2000. 16(5): pp.376-381.
DOI: 10.1007/s001700050169
Google Scholar
[10]
Nasrollahi, V., et al., Prediction of springback in sheet metal components with holes on the bending area, using experiments, finite element and neural networks. Materials and Design, 2012. 36: pp.331-336.
DOI: 10.1016/j.matdes.2011.11.039
Google Scholar
[11]
Myers, R.H., D.C. Montgomery, and C.M. Anderson-Cook, Response surface methodology : process and product optimization using designed experiments2009, Hoboken, N.J.: Wiley.
Google Scholar
[12]
Haykin, S.S., Neural networks and learning machines2009, New York: Prentice Hall/Pearson.
Google Scholar
[13]
Hornik, K., M. Stinchcombe, and H. White, Multilayer feedforward networks are universal approximators. Neural Networks, 1989. 2(5): pp.359-366.
DOI: 10.1016/0893-6080(89)90020-8
Google Scholar