A Comparative Study on the Oxidation of Fe-25Cr-7Ni-4Mo and Fe-25Cr-7Ni-2Mo-4W Steels

Article Preview

Abstract:

Stainless steel materials (FeCr and FeCrNi-based alloys) are employed in a wide range of modern applications due to their ability to withstand corrosive environments while maintaining good mechanical properties. Their corrosion resistance originates from Cr-rich oxide layer which serves as a barrier against ion diffusion between the alloy and the ambient phase. Custom steel grades can be designed for specific applications by optimizing their properties throughout alloy composition [1].

You might also be interested in these eBooks

Info:

Periodical:

Pages:

453-456

Citation:

Online since:

August 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] C. Donik, A. Kocijan, D. Mandrino, I. Paulin, M. Jenko, B. Pihlar, Initial Oxidation of Duplex Stainless Steel, Appl. Surf. Sci. 255 (2009) 7056-7061.

DOI: 10.1016/j.apsusc.2009.03.041

Google Scholar

[2] J.N. Waklyn, The role of molybdenum in the crevice corrosion of stainless steels, Corros. Sci. 21 (1981) 211–225.

Google Scholar

[3] A. Ihrzo, Y. Segui, N. Bui, F. Dabosi, On the conduction mechanisms of passive films on molybdenum-containing stainless steel, Corrosion 42 (1986) 141–146.

DOI: 10.5006/1.3584893

Google Scholar

[4] F. Falkenberg, I. Olefjord, Passivation of stainless steels in hydrochloric acid, J. Electrochem. Soc. 146 (1999) 1397–1406.

DOI: 10.1149/1.1391777

Google Scholar

[5] S. Virtanen, W.J. Tobler, in: P. Schmuki, D.J. Lockwood, Y. Ogata, H.S. Isaacs (Eds. ), Pits and Pores: Formation, Properties and Significance for Advanced Materials, PV 2000-25, The Electrochemical Society Proceedings, Pennington, NJ, (2000).

Google Scholar

[6] G.O. Ilevbare, G.T. Burstein, The role of alloyed molybdenum in the inhibition of pitting corrosion in stainless steels, Corros. Sci. 43 (2001) 485–513.

DOI: 10.1016/s0010-938x(00)00086-x

Google Scholar

[7] A. Schneider, D. Kuron, S. Hofman, R. Kirchheim, AES analysis of pits and passive films formed on Fe–Cr, Fe–Mo and Fe–Cr–Mo alloys, Corros. Sci. 31(1990) 191–196.

DOI: 10.1016/0010-938x(90)90107-g

Google Scholar

[8] L. Wegrelius, I. Olefjord, Dissolution and passivation of stainless steels exposed to hydrocholic acid, Master. Sci. Forum 195-199 (1995) 347-356.

DOI: 10.4028/www.scientific.net/msf.185-188.347

Google Scholar

[9] H. Ogawa, H. Omata, I. Itoh, H. Okada, Auger electron spectroscopic and electrochemical analysis of the effect of alloying elements on the passivation behavior of stainless steels, Corrosion 34 (1978) 52-60.

DOI: 10.5006/0010-9312-34.2.52

Google Scholar

[10] D.W. Yun, H.S. Seo, J.H. Jun, J.M. Lee, K.Y. Kim, Molybdenum effect on oxidation resistance and electric conduction of ferritic stainless steel for SOFC interconnect, Int. J. Hydrogen Energy 37 (2012) 10328-10336.

DOI: 10.1016/j.ijhydene.2012.04.013

Google Scholar

[11] D.W. Yun, H.S. Seo, J.H. Jun, J.M. Lee, D.H. Kim, K.Y. Kim, Oxide modification by chi phase formed on oxide/metal interface of Fe-22Cr-0. 5Mn ferritic stainless steel for SOFC interconnect, Int. J. Hydrogen Energy 36 (2011) 5595-5603.

DOI: 10.1016/j.ijhydene.2011.01.136

Google Scholar

[12] Kofstad Per. High temperature corrosion. 1st ed. New York: Elsevier Applied Science; (1988).

Google Scholar