The Research on Fault Diagnosis of Diesel Engine Based on EMD

Article Preview

Abstract:

In view of the superiority of support vector machine and the fault characteristic of diesel engine, a classify method for diesel engine fault based on support vector machine is presented in this paper. First the cylinder block vibration signal on different condition was measured by the simulation test of diesel engine fuel injection system fault, then the feature parameter was extracted by empirical mode decomposition and the most impactful parameter was selected to be the input of support vector machine. The result shows that this method has fine classified ability and precision.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

143-148

Citation:

Online since:

August 2014

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Huang N E, Shen Z, Long S R. The Ernpirical ModeDecomposition and the Hilbrt Spectrum For Nonlinearand Non-stationary Time Series Analysis [J]. Proc. RoyalSociety. London, 1998454 (12): 903-995.

Google Scholar

[2] Yu Dejie, Cheng Junsheng, Yang Yu. Hilbert-Huang transforms method of mechanical fault diagnosis [M]. Beijing: Science Press, 2006: 21-54.

Google Scholar

[3] Vladinir N. Vapnik. the nature of statistical learning theory [M]. Zhang Xuegong. Beijing: Tsinghua University press, (2000).

Google Scholar

[4] Liu Jianmin, Chen, Qiao Xinyong, et al. EMD, genetic algorithm and neural network to fault diagnosis of diesel engine based on [J]. Journal of The Academy of Armored Forces Engineering, 2010, 24 (5): 22-24.

Google Scholar

[5] Fang Ruiming. The theory of support vector machine and its application analysis [M]. Beijing: Chinese power press, 2004: 82-92.

Google Scholar

[6] Shi Feng, Wang Xiaochuan, Li Yang and. MATLAB neural network analysis of 30 cases [M]. Beijing: Beihang University press, 2010: 125-135.

Google Scholar

[7] Zhao Jie, Wang Jiufeng. Application of support vectormachine [J]. tractor in fault diagnosis of engine and vehicle, 2009, 36 (5): 127.

Google Scholar

[8] Sun Lin, Yang Shiyuan SVM the state diagnosis of rolling bearings [J]. Journal of HeFei University of Technology, a clustering structure based on the, 2009, 32 (1): 4-8.

Google Scholar